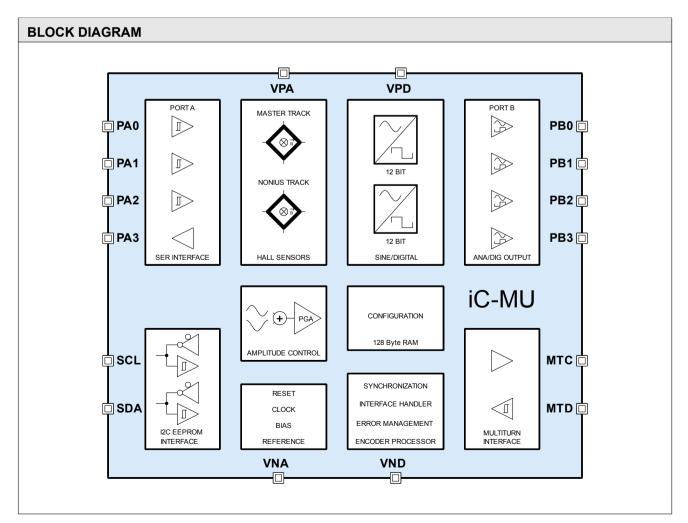


Rev E3, Page 1/68


FEATURES

- ♦ Integrated Hall sensors for two-track scanning
- ♦ Hall sensors optimized for 1.28 mm pole width (master track)
- ♦ Signal conditioning for offset, amplitude, and phase
- ♦ Sine/digital real-time conversion with 12-bit resolution (14-bit filtered)
- ♦ 2-track nonius absolute value calculation up to 18 bits
- ♦ 16, 32, or 64 pole pairs per measurement distance
- ♦ Enlargement of measurement distance with second iC-MU
- ♦ Synchronization of external multiturn systems
- ♦ Configuration from an external EEPROM using a multimaster I2C interface
- ♦ Microcontroller-compatible serial interface (SPI, BiSS, SSI)
- ♦ Incremental quadrature signals with an index (ABZ)
- ♦ FlexCount®: scalable resolution from 1 up to 65536 CPR
- ♦ Commutation signals for motors from 1 up to 16 pole pairs (UVW)

APPLICATIONS

- ♦ Rotative absolute encoders
- Linear absolute scales
- Singleturn and multiturn encoders
- Motor feedback encoders
- ♦ BLDC motor commutation
- ♦ Hollow shaft encoder
- Multi-axis measurement systems

Rev E3, Page 2/68

DESCRIPTION

iC-MU is used for magnetic off-axis position definition with integrated Hall sensors. By scanning two separate channels i.e. the master and nonius track the device can log an absolute position within one mechanical revolution. The chip conditions the sensor signals and compensates for typical signal errors.

The internal 12-bit sine/digital converters generate two position words that supply high-precision position data within one sine-period. The integrated nonius calculation engine calculates the absolute position within one mechanical revolution and synchronizes this with the master track position word. Position data can be transmitted serially, incrementally, or analog through two ports in various modes of operation. Commutation signals for brushless DC (BLDC) motors with up to 16 pole pairs are derived from the absolute position and supplied through a 3-pin interface.

During startup the device loads a CRC-protected configuration from an external EEPROM.

After the device has been reset an optional external multiturn is read in an synchronized with the internal position data. During operation the position is cyclically checked.

Note: Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).

The performance of iC-MU in application is impacted by system conditions like quality of the magnetic target and its adjustment, field strength and stray fields, temperature and mechanical stress and initial calibration.

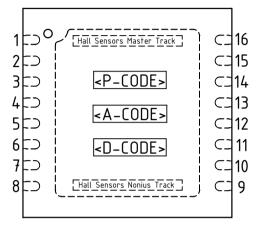
iC-MU is realized in two alternative leadless plastic packages DFN16-5x5 and QFN48-7x7. The DFN package occupies less board space and picks up less package stress on board. The double sized QFN package shows slightly lower Rth suited for increased operation temperature and sets higher demands for system conditions.

Rev E3, Page 3/68

CONTENTS

PACKAGING INFORMATION	5	STARTUP BEHAVIOR	27
PIN CONFIGURATION DFN16-5x5	_	CONFIGURABLE I/O INTERFACE	29
(topview)	5	Setting the interfaces	29
PIN CONFIGURATION QFN48-7x7 ⁴⁾ (topview)	5	Serial interface	28
PACKAGE DIMENSIONS DFN16-5x5	6	Configuring the data format and data	
PACKAGE DIMENSIONS QFN48-7x7*	7	length	30
TACINAL DIMENSIONS QUINTO-1XI	,	BiSS C Interface	32
ABSOLUTE MAXIMUM RATINGS	8	SSI interface	33
		SPI Interface: general description	35
THERMAL DATA	8	SPI Interface: Command ACTIVATE	35
ELECTRICAL CHARACTERISTICS	9	SPI interface: Command SDAD transmission	36
LELO INICAL CHARACTERIOTICS	3	SPI interface: Command SDAD status	37
OPERATING REQUIREMENTS	11	SPI interface: Command Read REGISTER	
Multiturn Interface	11	(single)	37
I/O Interface	12	SPI interface: Command Write REGISTER	
		(single)	38
PRINCIPLE OF MEASUREMENT	14	SPI interface: Command REGISTER status/data	38
Rotative measuring system	14	Status/uata	30
Linear measuring system	14	CONVERTER AND NONIUS CALCULATION	40
CONFIGURATION PARAMETERS	15	Converter principle	40
		Synchronization mode	40
REGISTER ASSIGNMENTS (EEPROM)	17		
Register assignment (EEPROM)	17	MT INTERFACE	43
Special BiSS registers	19	Configuration of the Multiturn interface Construction of a Multiturn system with two	43
SIGNAL CONDITIONING FOR MASTER AND		iC-MU	44
NONIUS CHANNELS: x = M,N	20	MT Interface Daisy Chain	46
Bias current source	20	INCREMENTAL OUTPUT ABZ,	
Gain settings		STEP/DIRECTION AND CW/CCW	47
Offset compensation			•
Phase adjustment	21	UVW COMMUTATION SIGNALS	50
ANALOG SIGNAL CONDITIONING FLOW: x =		REGISTER ACCESS THROUGH SERIAL	
M,N	23	INTERFACE (SPI AND BISS)	51
1. Conditioning the BIAS current	23	Address sections/Register protection level	55
2. Positioning of the sensor	23	Overview Register access: memory mapping,	
3.a Test modes analog master and analog nonius	23	Register protection levels	56
3.b Test mode CNV_x	23	STATUS REGISTER AND ERROR MONITORING	- 57
4. Track offset SPON	24	Status register	57
T. HOOK ORSEL OF ON	4→	Error and warning bit configuration	57
EEPROM AND I2C INTERFACE	25	Little data warning bit corniguration	01
Basic interface features	25	COMMAND REGISTER	59
EEPROM device requirements	25	Description of implemented commands	59
CRC checksums	25	Configurable NPRES Pin	61

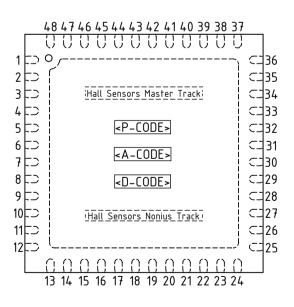
Rev E3, Page 4/68


POSITION OFFSET VALUES AND PRESET		DESIGN REVIEW: Notes On Chip Functions	65
FUNCTION	63	•	
Preset function	63	REVISION HISTORY	66

Rev E3, Page 5/68

PACKAGING INFORMATION

PIN CONFIGURATION DFN16-5x5 (topview)



PIN FUNCTIONS

No. Name Function

1	SCL	EEPROM interface, clock
2	SDA	EEPROM interface, data
3	VPA	+4.5 V +5.5 V analog supply voltage
4	VNA ¹⁾	Analog Ground
5	PB0	Port B, Pin 0: Digital I/O, analog output
6	PB1	Port B, Pin 1: Digital I/O, analog output
7	PB2	Port B, Pin 2: Digital I/O, analog output
8	PB3	Port B, Pin 3: Digital I/O, analog output
9	PA3	Port A, Pin 3: Digital I/O
10	PA2	Port A, Pin 2: Digital I/O
11	PA1	Port A, Pin 1: Digital I/O
	PA0	Port A, Pin 0: Digital I/O
13	VND ¹⁾	Digital ground
14	VPD	+4.5 V+5.5 V digital supply voltage
15	MTD	Multiturn interface, data input
16	MTC	Multiturn interface, clock output

PIN CONFIGURATION QFN48-7x74) (topview)

PIN FUNCTIONS

BP²⁾

Name Function

Backside Pad

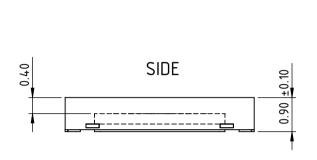
1_2	n.c.	not connected
	SCL	EEPROM interface, clock
		•
	SDA	EEPROM interface, data
	VPA	+4.5 V+5.5 V analog supply voltage
6	VNA ¹⁾	Analog Ground
7	PB0	Port B, Pin 0: Digital I/O, analog output
8	PB1	Port B, Pin 1: Digital I/O, analog output
9	PB2	Port B, Pin 2: Digital I/O, analog output
10	PB3	Port B, Pin 3: Digital I/O, analog output
11-26	n.c.	not connected
27	PA3	Port A, Pin 3: Digital I/O
28	PA2	Port A, Pin 2: Digital I/O
29	PA1	Port A, Pin 1: Digital I/O
30	PA0	Port A, Pin 0: Digital I/O
31	VND ¹⁾	Digital ground
32	VPD	+4.5 V+5.5 V digital supply voltage
33	MTD	Multiturn interface, data input
34	MTC	Multiturn interface, clock output
35-48	n.c.	not connected
	$BP^{2)}$	Backside Pad

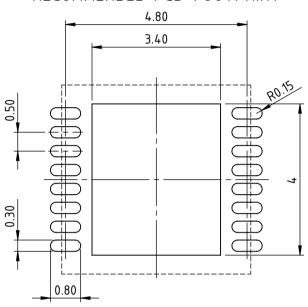
IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes);

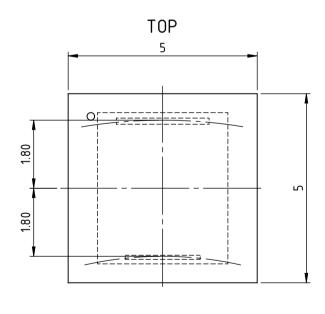
1) Analog (VNA) and digital grounds (VND) have to be connected low ohmic on the PCB.

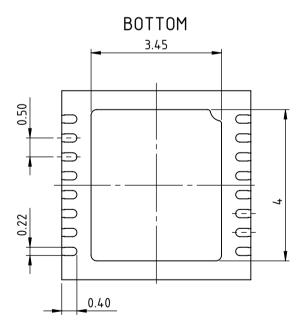
²⁾ The backside pad on the underside of the package should be appropriately connected to VNA/VND for better heat dissipation (ground plane).

³⁾ Only the Pin 1 mark on the front or reverse is determinative for package orientation (<P-CODE>, <A-CODE>, <D-CODE> are subject to change).


⁴⁾ Please also see Design Review item No. 7.




Rev E3, Page 6/68


PACKAGE DIMENSIONS DFN16-5x5

RECOMMENDED PCB-FOOTPRINT

All dimensions given in mm. Tolerances of form and position according to JEDEC M0-229. Positional tolerance of sensor pattern: ± 0.10 mm / $\pm 1^{\circ}$ (with respect to center of backside pad).

drb_dfn16-5x5-2_mu_1_pack_1, 10:1

Rev E3, Page 7/68

PACKAGE DIMENSIONS QFN48-7x7*

RECOMMENDED PCB-FOOTPRINT 6.90 5.55 RO.15 000000000000 SIDE 0.90 ±0.10 6.90 0.50 0.30 TOP **BOTTOM** 5.55 1.80 1.80 0.50 0.22

All dimensions given in mm. Tolerances of form and position according to JEDEC M0–220. Positional tolerance of sensor pattern: ± 0.10 mm / $\pm 1^{\circ}$ (with respect to center of backside pad).

drb_qfn48-7x7-2_mu_y2_pack_1, 8:1

^{*)} Please also see Design Review item No. 7.

Rev E3, Page 8/68

ABSOLUTE MAXIMUM RATINGS

Maximum ratings do not constitute permissible operating conditions; functionality is not guaranteed. Exceeding the maximum ratings can damage the device

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	Voltage at VPA, VPD		-0.3	6	V
G002	I()	Current in VPA		-10	20	mA
G003	I()	Current in VPD		-10	100	mA
G004	V()	Voltage at all pins except VPD		-0.3	VPD+0.3	V
G005	I()	Current in all I/O pins	DC current Pulse width < 10 µs	-10 -100	10 100	mA mA
G006	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G007	Ptot	Permissible Power Dissipation			400	mW
G008	Tj	Chip-Temperature		-40	150	°C
G009	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating conditions: VPA = VPD = 5 V ±10%

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Ta*	Operating Ambient Temperature Range	DFN16-5x5 QFN48-7x7	-40 -40		110 115	°C
T02	Rthja	Thermal Resistance Chip to Ambient DFN16	DFN16-5x5 on PCB according to JESD51		40		K/W
T03	Rthja	Thermal Resistance Chip to Ambient QFN48	QFN48-7x7 on PCB according to JESD51		30		K/W

^{*)} Please also see Design Review item No. 7.

Rev E3, Page 9/68

ELECTRICAL CHARACTERISTICS

Operating conditions: VPD = VPA = 5 V \pm 10%, Tj = -40. . . 125°C, IBP calibrated to 200 μ A, reference is VNA = VND, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device						
101	V(VPA, VPD)	Permissible Supply Voltage	VPA = VPD	4.5	5	5.5	V
103	I(VPA)	Analog Supply Current in VPA		8	13	16	mA
104	I(VPD)	Digital Supply Current in VPD		20	40	65	mA
105	Vc()hi	Clamp Voltage hi at All Pins	Vc()hi = V() - V(VPD), I() = +1 mA	0.3		1.6	V
106	Vc()lo	Clamp Voltage lo at All Pins	I() = -1 mA	-1.6		-0.3	V
107	ton()	Power-Up Time	VPD > 4 V, EEPROM Data valid after first I ² C read in		20		ms
108	ΔV/Δt	Power-Up Slew Rate at VPA = VPD	$V()$ = 3.0 $V \rightarrow 4.5 V$	50			V/s
109	CVPA, CVPD	Required Backup Capacitors at VPA, VPD	placed near by pin, recommended low ESR		100		nF
Hall S	ensors						
201	Hext	Operating Magnetic Field Strength	at surface of chip	15		100	kA/m
202	f()	Operating Magnetic Field Frequency				7	kHz
203	rpm	Permissible Rotation of Pole Wheel with FRQ_CNV=lo	16 pole pairs 32 pole pairs 64 pole pairs (note: for incremental part see table 80)			24000 12000 6000	rpm rpm rpm
204	vmax	Permissible Movement Speed				17	m/s
205	hpac	Sensor-to-Package-Surface Distance			400		μm
Assen	nbly Tolera	nces					
301	TOLrad	Permissible Radial Displacement				0.5	mm
302	TOLtan	Permissible Tangential Displacement				0.5	mm
303	WOBrad	Permissible Eccentricity of Code Disc	MPC = 0x4 MPC = 0x5, 0x6			0.06 0.1	mm mm
Bias C	Current Sou	rce, Reference Voltage, Power O	n Reset, Clock Oscillator				
401	Vbg	Bandgap Voltage	TEST = 0x1F	1.18	1.24	1.36	V
402	Vref	Reference Voltage	TEST = 0x1F	45	50	55	%VPA
403	IBM	Reference Current	CIBM = 0x0 CIBM = 0xF IBM calibrated	-370 -220	-200	-100 -180	μΑ μΑ μΑ
404	VPDon	Turn-on Threshold VPD (Power-On Release)	increasing voltage at V(VPD)	3.65	3.9	4.3	V
405	VPDoff	Turn-off Threshold VPD (Power-Down Reset)	decreasing voltage at V(VPD)	3	3.5	3.8	V
406	VPDhys	Hysteresis	VPDhys = VPDon - VPDoff	0.3			V
407	fosc	Clock Frequency	TEST=0x26, fosc = 64*f(HCLK), IBM aligned	22	26	32	MHz
408	tchk	Max. Time For Internal Cyclic Checks	NCHK_NON = 0x0, CHK_MT = 0x1, NCHK_CRC = 0x0, MODE_MT = 0xF (18 bit), SBL_MT = 0x3 (4 bit), ESSI_MT = 0x1 (Error bit)			6	ms
Signa	Condition	ing Master and Nonius Track (x =	M, N)				
501	GC	Adjustable Gain Range	GC_x = 0x0 GC_x = 0x1 GC_x = 0x2 GC_x = 0x3		4.4 7.7 12.4 20.6		
502	GF	Adjustable Fine Gain Range	GF_x = 0x00 GF_x = 0x20 GF_x = 0x3F		1 4.4 19		

Rev E3, Page 10/68

ELECTRICAL CHARACTERISTICS

Operating conditions: VPD = VPA = 5 V \pm 10%, Tj = -40. . . 125°C, IBP calibrated to 200 μ A, reference is VNA = VND, unless otherwise stated

ltem No.	Symbol	Symbol Parameter Conditions		Min.	Тур.	Max.	Unit
503	GX	Adjustable Gain(SIN)/Gain(COS)	GX_x = 0x00 GX_x = 0x3F GX_x = 0x7F	9	0 10 -9	-8.5	% % %
504	vos	Adjustable Offset Calibration	VOS_x = 0x3F VOS_x = 0x7F	60	70 -70	-60	mV mV
505	PHM	Adjustable Phase Calibration Master Track	PH_M = 0x3F PH_M = 0x7F	6	7 -7	-6	0
506	PHN	Adjustable Phase Calibration Nonius Track	PH_N = 0x3F PH_N = 0x7F	11.25	13 -13	-11.25	0
507	Vampl	Signal Level Controller	chip internally, Vampl = Vpp(PSINx)+Vpp(NSINx), ENAC = 1	3.2	4	4.8	Vpp
508	Vae()lo	Signal Monitoring Threshold lo	Vae()lo = Vpp(PSINx)+Vpp(NSINx)	1.2		2.8	Vpp
509	Vae()hi	Signal Monitoring Threshold hi	Vae()hi = Vpp(PSINx)+VPP(NSINx)	5		6.3	Vpp
Sine-	To-Digital Co						
601	AAabs	Absolute Angular Accuracy	ideal input signals, reference to 12 Bit of sine period			2	LSB
602	AArel	Relative Angular Accuracy	FILT = 0x2 FILT = 0x6 ideal input signals, reference to 12 Bit of sine period, f = 1 KHz			2 1/4	LSB LSB
Noniu	s Calculatio	on					
701	Pnon	Permissible Track deviation Master vs. Nonius	16 periods, MPC = 0x4 32 periods, MPC = 0x5 64 periods, MPC = 0x6 referenced to 360° of Master sine period			10 5 2.5	DEG DEG DEG
Digita	l Output Po	rt PA13, MTC, SCL, SDA					
801	Vs()hi	Saturation Voltage hi Pins PA13	Vs()hi = V(VPD) - V(), I() = -4 mA			0.4	V
802	Vs()lo	Saturation Voltage lo	I() = 4 mA versus VND			0.4	V
803	Isc()hi	Short-Circuit Current hi Pins PA13, MTC	V() = V(VND), 25 °C	-90	-50		mA
804	Isc()lo	Short-Circuit Current lo	V() = V(VPD), 25 °C		50	90	mA
805	tr()	Rise Time	CL = 50 pF			60	ns
806	tf()	Fall Time	CL = 50 pF			60	ns
807	IIk(PA3)	Leakage Current at PA3	MODEA=0, PA0 = hi	-5		5	μA
808	fclk(SCL)	Frequency at SCL	normal mode during start-up		80 70		kHz kHz
Digita	I Input Port	PA02, MTD, SCL, SDA					
901	Vt()hi	Threshold Voltage hi				2	V
902	Vt()lo	Threshold Voltage lo		0.8			V
903	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	150			mV
904	lpu()	Pull-Up Current Pins PA02, MTD	V() = 0 V V(VPD)-1 V	-60	-30	-6	μA
905	lpu()	Pull-Up Current Pins SCL, SDA	V() = 0 V V(VPD)-1 V	-800	-300	-80	μΑ
906	f()	Permissible Input Frequency				10	MHz
Analo	g/Digital Ou	tput Port PB03					
A01	I()buf	Analog Driver Current		-1		1	mA
A02	fg()ana	Analog Bandwidth			100		kHz
A03	lsc()hi,ana	Analog Short-Circuit Current hi	V() = V(VND)			-1.5	mA
A04	lsc()lo,ana	Analog Short-Circuit Current lo	V() = V(VPD)	1.5			mA
A05	Rout(),ana	Output Resistor, Analog Mode	I() = 1 mA			500	Ω
A06	Vs()hi,dig	Digital Saturation Voltage hi	Vs() = V(VPD) - V(), I() = -4 mA			0.5	V
A07	Vs()lo,dig	Digital Saturation Voltage lo	I() = 4 mA			0.5	V
	Isc()hi,dig	Short-Circuit Current hi	V() = V(VPD)	-60	-35		mA

Rev E3, Page 11/68

ELECTRICAL CHARACTERISTICS

Operating conditions: VPD = VPA = $5 \text{ V} \pm 10\%$, Tj = -40...125°C, IBP calibrated to 200 μ A, reference is VNA = VND, unless otherwise stated

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
A09	Isc()lo,dig	Short-Circuit Current lo	V() = V(VND)		45	70	mA
A10	tr()	Rise Time	CL = 50 pF			50	ns
A11	tf()	Fall Time	CL = 50 pF			50	ns
A12	Ipu(PB3)	Pull-Up Current	V() = 0 VV(VPD) - 1 V, MODEB = 0x00x3	-60	-30	-6	μA
A13	llk()	Leakage Current	MODEB = 0x7	-5		5	μA

OPERATING REQUIREMENTS: Multiturn Interface

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
Multitu	rn Interfac	e (Figure 1)				
1001	t _{MTC}	Clock Period		6.4		μs
1002	t _s MD	Setup Time: Data valid before MTC hi→lo		50		ns
1003	t _h MD	Hold Time: Data stable after MTC hi→lo		50		ns
1004	t _{tos}	Timeout		20		μs
1005	t _{cycle}	Cycle Time	CHK_MT=1	1	5	ms

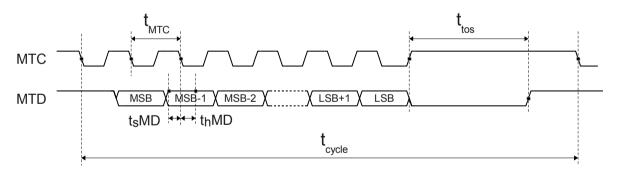


Figure 1: Timing multiturn interface, MODE_MT/=0

Rev E3, Page 12/68

OPERATING REQUIREMENTS: I/O Interface

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
	│ terface (Fig	2)		IVIII.	IVIAX.	
	, , ,	Permissible Clock Period	and Flore Char No : 006		/f()	
1101	t _{C1}		see Elec. Char. No.: 906		/1()	ns
I102	t _{W1}	Wait Time: between NCS lo \rightarrow hi and NCS hi \rightarrow lo		500		ns
I103	t _{S1}	Setup Time: NCS lo before SCLK lo \rightarrow hi		50		ns
I104	t _{P1}	Propagation Delay: MISO stable after NCS hi → lo			50	ns
I105	t _{P2}	Propagation Delay: MISO high impedance after NCS Io → hi	MODEA = 0x00	3	30	ns
I106	t _{H1}	Hold Time: NCS lo after SCLK lo → hi	valid for SPI mode 3	30		ns
l107	t _{H3}	Hold Time: NCS lo after SCLK hi \rightarrow lo	valid for SPI mode 0	50		ns
I108	t _{S2}	Setup Time: MOSI stable before SCLK lo → hi		30		ns
I109	t _{H2}	Hold Time: MOSI stable after SCLK lo → hi		30		ns
I110	t _{P3}	Propagation Delay: MISO stable after MOSI change	mode: repeating MOSI on MISO		50	ns
I1111	t _{P4}	Propagation Delay: MISO stable after SCLK $hi \rightarrow lo$	mode: sending data MISO	3	30	ns
l112	t _{W2}	Wait Time: SCLK stable after NCS lo → hi		500		ns
I113	t _{L1}	Clock Signal lo Level Duration		25		ns
I114	t _{L2}	Clock Signal hi Level Duration		25		ns
BiSS-I	nterface (F	igure 3,Figure 4)				
I115	t _{tos}	Timeout adaptive	typ. t _{init}	1.5*t _{MAS}	1.5*t _{MAS} + 8/f _{osc}	ns
I116	t _{MAS}	Permissible Clock Period		200		ns
I117	t _{MASh}	Clock Signal Hi Level Duration		100	t _{tos}	ns
I118	t _{MASI}	Clock Signal Lo Level Duration		100		ns
SSI-Int	terface (Fig	jure 5, Figure 6)				
l1119	t _{tos}	Timeout adaptive	typ. t _{init}	1.5*t _{MAS}	1.5*t _{MAS} + 8/f _{osc}	
l120	t _{MAS}	Permissible Clock Period		250		ns
l121	t _{MASh}	Clock Signal Hi Level Duration		125	t _{tos}	ns
l122	t _{MASI}	Clock Signal Lo Level Duration		125		ns

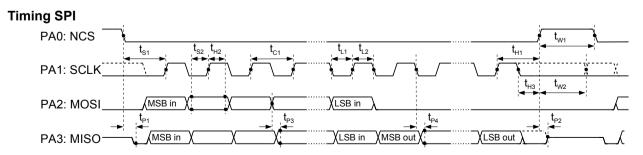


Figure 2: Timing SPI interface

Rev E3, Page 13/68

Timing BiSS

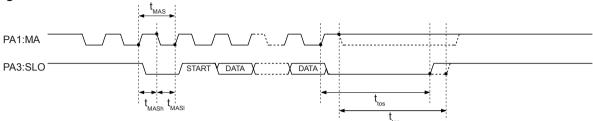


Figure 3: Timing BiSS interface

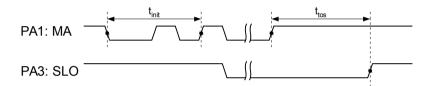


Figure 4: Timeout BiSS interface adaptive

Timing SSI

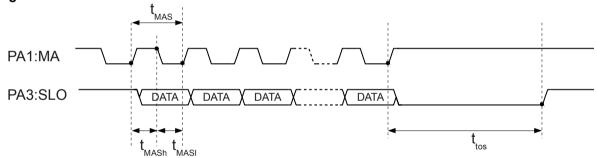


Figure 5: Timing SSI interface

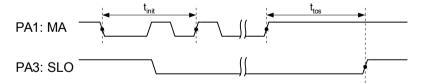


Figure 6: Timeout SSI interface adaptive

Rev E3, Page 14/68

PRINCIPLE OF MEASUREMENT

An absolute position measuring system consists of a magnetized code carrier and an iC-MU which integrates Hall sensors for signal scanning, signal conditioning, and interpolation in one single device. iC-MU can be used in rotative and linear measurement systems.

Figure 7: Rotative position measurement system

Figure 8: Linear position measurement system

Rotative measuring system

The magnetic code carrier consists of two magnetic encoder tracks. The outer track comprises an even number of alternately magnetized poles and is used for high-precision position definition. This is thus called the master track. The second inside track has one pole pair less than the outer track and is thus referred to as the nonius track. This track is used to calculate an absolute position within one revolution of the pole disc. To this end, the difference in angle between the two tracks is calculated.

Number of pole pairs		16	32	64
Master track diameter	[mm]	13.04	26.08	52.15
Chip center to axis center	[mm]	4.72	11.24	24.28
Nonius track diameter	[mm]	5.84	18.88	44.95
Master track pole width	[mm]	1.28	1.28	1.28
Nonius track pole width	[mm]	0.61	0.96	1.12

Table 6: Pole disc dimensions in mm for rotative systems

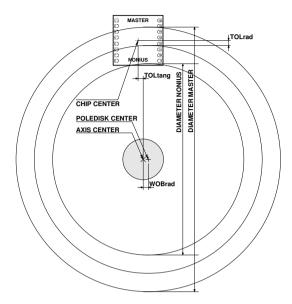


Figure 9: Definition of system measurements

The Hall sensors of iC-MU span one pole pair of the code carrier. The pole width of the master track is defined by the distance of the Hall sensors and is 1.28 mm. The position of the sensors on the upper chip edge has been optimized for 32 pole pairs. Accordingly, the Hall sensors generate a periodic sine and cosine signal with a cycle length of 2.56 mm. The scan diameter can be computed from the number of pole pairs. The diameter of the pole disc although depends on other mechanical requirements and should be approx. 3 mm greater than the scan diameter. A specific diameter for the master and nonius tracks is derived depending on the number of configured pole pairs.

The distance between the hall sensors of the nonius track and the master track is stipulated as being 3.6 mm by the evaluation device. The scan diameters of the nonius track can be seen in Table 6.

Linear measuring system

With a linear nonius system the pole width of the master track is also 1.28 mm. The pole width of the nonius track is defined by the number of pole pairs with

$$p_{\text{nonius}} = 1.28 \, mm * \frac{\text{number of poles}_{\text{master}}}{\text{number of poles}_{\text{nonius}}}$$

Number of pole pairs	16	32	64
Master track pole width [mm]	1.28	1.28	1.28
Nonius track pole width [mm]	1.365	1.321	1.300

Table 7: Linear scales, pole widths in mm

Rev E3, Page 15/68

CONFIGURATION PARAMETERS

Analog parameters (valid for all channels)

CIBM: Bias current settings (p. 20)

ENAC: Amplitude control unit activation (p. 21)

Signal conditioning

GC_M: Master gain range selection (p. 20)

GF M: Master gain (p. 20)

GX_M: Master cosine signal gain adjustment

(p. 20)

VOSS_M: Master sine offset adjustment (p. 21)
VOSC_M: Master cosine offset adjustment (p. 21)
PH_M: Master phase adjustment (p. 21)
GC_N: Nonius gain range selection (p. 20)

GF_N: Nonius gain (p. 20)

GX_N: Nonius cosine signal gain adjustment

(p. 20)

VOSS_N: Nonius sine offset adjustment (p. 21)
VOSC_N: Nonius cosine offset adjustment (p. 21)

PH_N: Nonius phase adjustment (p. 22)

Digital parameters

TEST: Adjustment modes/iC-Haus test modes

(p. 23)

CRC16: EEPROM configuration data checksum

(p. 25)

CRC8: EEPROM offset and preset data

checksum (p. 26)

NCHK CRC: Cyclic check of CRC16 and CRC8

(p. 26)

BANKSEL: Serial Access: Bank register (p. 51) RPL: Register Access Control (p. 55)

RPL_RESET: Serial Access: Register for reset register

access restriction (p. 55)

EVENT_COUNT: Serial Access: Event counter (p. 60) HARD REV: serial address: revision code (p. 54)

Configurable I/O interface

MODEA: I/O port A configuration (p. 29)
MODEB: I/O port B configuration (p. 29)
PA0_CONF: Configurable commands to pin PA0

(p. 62)

ROT: Direction of rotation (p. 48)

OUT MSB: Output shift register configuration: MSB

used bits (p. 31)

OUT LSB: Output shift register configuration: LSB

used bits (p. 31)

OUT_ZERO:

Output shift register configuration: number of zeros inserted after the used bits and before an error/warning (p. 31)

MODE_ST: Data output (p. 30)

GSSI: Gray/binary data format (p. 34)

RSSI: Ring operation (p. 34)

Multiturn interface

MODE_MT: Multiturn mode (p. 43)

SBL_MT: Multiturn synchronization bit length

(p. 43)

CHK_MT: Cyclic check of the multiturn value

(p. 44)

GET_MT: MT interface daisy chain (p. 46)

ROT_MT: Direction of rotation external multiturn

(p. 44)

ESSI_MT: Error Bit external multiturn (p. 44)
SPO MT: Offset external multiturn (p. 44)

Converter and nonius calculation

FILT: Digital filter settings (p. 40)
MPC: Master period count (p. 40)
LIN: Linear scanning (p. 41)
SPO_x: Offset of nonius to master

(x=BASE,0-14) (p. 41)

NCHK_NON: Cyclic check of the nonius value (low

active) (p. 42)

Incremental output ABZ, STEP/DIR and CW/CCW

RESABZ: Incremental interface resolution

ABZ,STEP-DIR,CW/CCW (p. 47)

LENZ: Index pulse length (p. 48)

INV_A: A/STEP/CW signal inversion (p. 48)
INV_B: B/DIR/CCW signal inversion (p. 48)
INV_Z: Z/NCLR signal inversion (p. 48)
SS_AB: System AB step size (p. 48)
FRQAB: AB output frequency (p. 48)
CHYS AB: Converter hysteresis (p. 49)

ENIF AUTO: Incremental interface enable (p. 49)

UVW commutation signals

PPUVW: Number of commutation signal pole

pairs (p. 50)

PP60UVW: Commutation signal phase position

(p.50)

OFF_UVW: Commutation signal start angle (p. 50)

OFF_COM: serial address: absolute position offset

for UVW calculation engine changed by

nonius (p. 50)

Status/command registers and error monitoring

CMD_MU: serial address: command register (p. 59)
STATUS0: serial address: status register 0 (p. 57)
STATUS1: serial address: status register 1 (p. 57)
CFGEW: Error and warning bit configuration

(p. 58)

EMTD: Minimum error message duration (p. 58)

ACC_STAT: Output configuration status register

(p. 57)

ACRM RES: Automatic reset with master track

amplitude errors (p. 42)

Rev E3, Page 16/68

BiSS specific IDs

DEV_ID: Device ID (p. 19)
MFG_ID: Manufacturer ID (p. 19)
EDSBANK: EDSBANK (p. 19)

PROFILE_ID: Profile ID (p. 19)

SERIAL: Serial number (p. 19)

Preset function

OFF_ABZ: Offset Absolute position offset for ABZ

calculation engine (p. 63)

OFF_POS: serial address: absolute position offset

for ABZ calculation engine changed by

nonius/multiturn (p. 63)

PRES_POS: Preset position for ABZ section (p. 63)

Rev E3, Page 17/68

REGISTER ASSIGNMENTS (EEPROM)

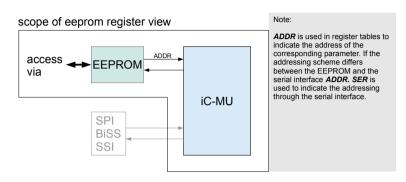


Figure 10: Scope of register mapping EEPROM

Register assignment (EEPROM)

OVERV	OVERVIEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Signal C	Signal Conditioning							
0x00		VI(1:0)	(1:0) GF_M(5:0)					
0x01	_		GX_M(6:0)					
0x02			VOSS M(6:0)					
0x03				,	VOSC_M(6:0)		
0x04					PH_M(6:0)			
0x05	ENAC					CIBN	M(3:0)	
0x06	GC_I	N(1:0)		1	GF_N	V(5:0)		
0x07					GX_N(6:0)			
80x0				,	VOSS_N(6:0))		
0x09				,	VOSC_N(6:0))		
0x0A					PH_N(6:0)			
Digital F	Parameters							
0x0B			MODEB(2:0)	1			MODEA(2:0)	
0x0C		1		CFGE	W(7:0)			
0x0D	ACC_STAT	NCHK_CRC	NCHK_NON	ACRM_RES			EMTD(2:0)	
0x0E	ESSI_I	MT(1:0)	MT(1:0) ROT_MT LIN FILT(2:0)					
0x0F		SPO_MT(3:0) MPC(3:0)						
0x10	GET_MT	CHK_MT		/IT(1:0)		_	MT(3:0)	
0x11	0	OUT_ZERO(2:0) OUT_MSB(4:0)						
0x12	GSSI	RSSI	MODE_	ST(1:0)		OUT_L	SB(3:0)	
0x13					BZ(7:0)			
0x14					3Z(15:8)			
0x15	ROT		SS_AB(1:0) ENIF_AUTO FRQAB(2:0)					
0x16		Z(1:0)	_ , ,		INV_Z			
0x17	RPL	_(1:0) PPUVW(5:0)						
TEST								
0x18	18 TEST(7:0)							
	OFFSET							
0x19	SPO_0(3:0)				SPO_BASE(3:0)			
0x1A	SPO_2(3:0) SPO_1(3:0)							

Rev E3, Page 18/68

OVERV	'IEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x1B	SPO_4(3:0)				SPO_3(3:0)			1
0x1C		SPO_	6(3:0)		SPO_5(3:0)			
0x1D		SPO_	8(3:0)			SPO_	7(3:0)	
0x1E		SPO_	10(3:0)			SPO_	9(3:0)	
0x1F		SPO_	12(3:0)			SPO_	11(3:0)	
0x20		SPO_					13(3:0)	
CRC16	I.		· ,			_	, ,	
0x21				CRC1	6(15:8)			
0x22					16(7:0)			
OFFSET	/PRESET							
0x23		OFF_A	BZ(3:0)					
0x24				OFF_A	BZ(11:4)	1	1	
0x25				OFF_AE	3Z(19:12)			
0x26				OFF AE	3Z(27:20)			
0x27					3Z(35:28)			
0x28		OFF_U	VW(3:0)					
0x29				OFF_U	√W(11:4)	II.		l
0x2A		PRES F	POS(3:0)					
0x2B				PRES_F	OS(11:4)			
0x2C				PRES_P	OS(19:12)			
0x2D				PRES_P	OS(27:20)			
0x2E	PRES_POS(35:28)							
CRC8	L							
0x2F				CRC	8(7:0)			
PA0_CC	NF				· ·			
0x30				PA0_C	DNF(7:0)			
BiSS Pr	ofile and Seri	al number			, ,			
0x31				EDSBANK	(7:0) = 0x01			
0x32				PROFIL	E_ID(7:0)			
0x33				PROFILE	E_ID(15:8)			
0x34					AL(7:0)			
0x35	SERIAL(15:8)							
0x36	SERIAL(23:16)							
0x37	SERIAL(31:24)							
BiSS Ide	entifier							
0x38				DEV_	ID(7:0)			
0x39					D(15:8)			
0x3A	DEV_ID(23:16)							
0x3B				DEV_II	D(31:24)			
0x3C					D(39:32)			
0x3D	DEV_ID(47:40)							
0x3E					ID(7:0)			
0x3F	MFG_ID(15:8)							
Notes:	Register as	signment for	serial access	s through SP	I/BiSS s.p. 51			

Rev E3, Page 19/68

Special BiSS registers

For further information on parameters, see BiSS Interface Protocol Description (C Mode) www.ichaus.de/product/iC-MU.

DEV_ID(7:0)	Addr. 0x38; bit 7:0
	Addr. SER:0x78; bit 7:0
DEV_ID(15:8)	Addr. 0x39; bit 7:0
	Addr. SER:0x79; bit 7:0
DEV_ID(23:10	Addr. 0x3A; bit 7:0
	Addr. SER:0x7A; bit 7:0
DEV_ID(31:24	4) Addr. 0x3B; bit 7:0
	Addr. SER:0x7B; bit 7:0
DEV_ID(39:32	2) Addr. 0x3C; bit 7:0
	Addr. SER:0x7C; bit 7:0
DEV_ID(47:40	O) Addr. 0x3D; bit 7:0
	Addr. SER:0x7D; bit 7:0
Code	Description
0x000000000000	
	DEV_ID
0xFFFFFFFFFF	
UALITIC FFFFFFF	

Table 9: Device ID

MFG_ID(7:0)	Addr. 0x3E; bit 7:0
	Addr. SER:0x7E; bit 7:0
MFG_ID(15:8) Addr. 0x3F; bit 7:0
	Addr. SER:0x7F; bit 7:0
Code	Description
0x0000	
	MFG_ID
0xFFFF	

Table 10: BiSS Manufacturer ID

EDSBANK(7:	0) Addr. 0x31; bit 7:0	
EDSBANK(7:	0) Addr. SER:0x41; bit 7:0	
Code	Description	
0x00	no EDS	
0x01		
	EDSBANK pointer to first EDS bank	
0xFE		
0xFF	no EDS	
Note:	recommended value 0x02, in this case an additional sensor like iC-PVL can use BANK 1 for configuration	

Table 11: EDSBANK: Start of EDS-part

PROFILE_ID(7:0)		Addr. 0x32; bit 7:0	
		Addr. SER:0x42; bit 7:0	
PROFILE_ID	(15:8)	Addr. 0x33; bit 7:0	
		Addr. SER:0x43; bit 7:0	
Code	Descr	Description	
0x0000			
	PROFILE_ID		
0xFFFF		_	

Table 12: Profile ID

SERIAL(7:0)	Addr. 0x34; bit 7:0
	Addr. SER:0x44; bit 7:0
SERIAL(15:8)	Addr. 0x35; bit 7:0
	Addr. SER:0x45; bit 7:0
SERIAL(23:10	6) Addr. 0x36; bit 7:0
	Addr. SER:0x46; bit 7:0
SERIAL(31:24	4) Addr. 0x37; bit 7:0
	Addr. SER:0x47; bit 7:0
Code	Description
0x00000000	
	SERIAL
0xFFFFFFF	

Table 13: Serial number

Rev E3, Page 20/68

SIGNAL CONDITIONING FOR MASTER AND NONIUS CHANNELS: x = M,N

Bias current source

The calibration of the bias current source in test mode TEST=0x1F is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. SCL clock frequency). For the calibration the current out of pin PB2 into VNA must be measured, and register bits CIBM changed until the current is calibrated to 200 μ A.

CIBM(3:0)	Addr. 0x05; bit 3:0
Code	Description
0x0	-40 %
0x8	0 %
0x9	+5 %
0xF	+35 %

Table 14: Calibrating the bias current

Gain settings

iC-MU has signal conditioning features that can compensate for signal and adjustment errors. The Hall signals are amplified in two stages. The gain of both amplification stages is automatically controlled when the bit ENAC is set to '1'. The register bits GC_x and GF_x have no effect. In the case of a deactivated automatic gain control (ENAC='0') the gain must be set manually. First, the approximate field strength range must be selected in which the Hall sensor is to be operated. The first amplifier stage can be programmed in the following ranges:

GC_M(1:0)	Addr. 0x00; bit 7:6
GC_N(1:0)	Addr. 0x06; bit 7:6
Code	Coarse gain
0x0	4.4
0x1	7.8
0x2	12.4
0x3	20.7

Table 15: Selection of the Hall signal amplification range

The second amplifier stage can be varied within a wide range.

GF_M(5:0)	Addr. 0x00; bit 5:0
GF_N(5:0)	Addr. 0x06; bit 5:0
Code	Fine gain
0x00	1.000
0x01	1.048
	$exp(\frac{ln(20)}{64} \cdot GF_x)$
0x3F	19.08

Table 16: Hall signal amplification

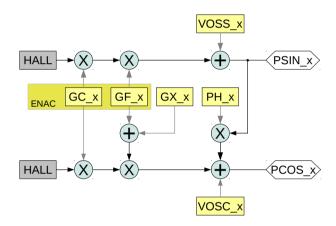


Figure 11: Conditioning of hall voltages

Register GX_x enables the sensitivity of the sine channel in relation to the cosine channel to be corrected. The amplitude of the cosine channel is adapted to the amplitude of the sine channel. The cosine amplitude can be corrected within a range of approx. ±10 %.

GX_M(6:0)	Addr. 0x01; bit 6:0
GX_N(6:0)	Addr. 0x07; bit 6:0
Code	Description
0x00	1.000
0x01	1.0015
	$exp(\frac{ln(20)}{2048} \cdot GX_x)$
0x3F	1.0965
0x40	0.9106
	$exp(-\frac{ln(20)}{2048} \cdot (128 - GX_x))$
0x7F	0.9985

Table 17: Cosine gain adjustment

The integrated amplitude control unit can be activated using bit ENAC. In this case the differential signal amplitude is regulated to 2 Vpp; the values of GF_x have no effect here.

Rev E3, Page 21/68

ENAC	Addr. 0x05; bit 7
Code	Description
0	Amplitude control not active (constant)
1	Amplitude control active $(sin^2 + cos^2)$

Table 18: Amplitude control unit activation

The current gain set by the amplitude control unit can be read with the parameters ACGAIN_M and ACGAIN_N for the gain range, AFGAIN_M and AFGAIN_N for the gain factor (ref. Table 19 and 20). AFGAIN_M and AFGAIN_N shows coarse steps of the gain factor, but the amplitude control unit uses a finer resolution to control the gain factor.

ACGAIN_M(1	:0)	Addr. SER:0x2B;	bit 4:3	R
ACGAIN_N(1	:0)	Addr. SER:0x2F;	bit 4:3	R
Code	Gain ı	range		
0x0	4.4			
0x1	7.8			
0x2	12.4			
0x3	20.7			

Table 19: Current gain range of amplitude control unit

AFGAIN_M(2	:0) Addr. SER:0x2B; bit 2:0	R
AFGAIN_N(2	O) Addr. SER:0x2F; bit 2:0	R
Code	Description	
0x0	1.00	
0x1	1.45	
	$exp(\frac{ln(20)}{8} \cdot AFGAIN_x)$	
0x7	13.75	

Table 20: Current gain factor of amplitude control unit

After startup the gain is increased until the set amplitude is obtained. If the input amplitude is altered by the distance between the magnet and sensor being varied, or if there is a change in the supply voltage or temperature, the gain is automatically adjusted. The conversion of the sine signals into high-resolution quadrature signals thus always takes place at optimum amplitude.

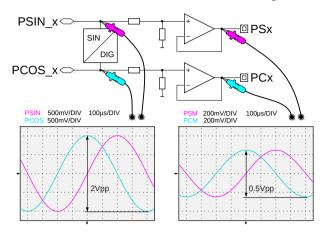


Figure 12: Definition of peak-peak amplitude

Offset compensation

If there is an offset in the sine or cosine signal, possibly caused by a magnet not being precisely adjusted, for instance, this can be corrected by registers VOSS_x and VOSC_x. The output voltage can be shifted in each case by ±63 mV in order to compensate for the offset.

VOSS_M(6:	0) Addr. 0x02; bit 6:0
VOSS_N(6:	0) Addr. 0x08; bit 6:0
VOSC_M(6:	0) Addr. 0x03; bit 6:0
VOSC_N(6:	0) Addr. 0x09; bit 6:0
Code	Description
0x00	0 mV
0x01	1 mV
0x3F	63 mV
0x40	0 mV
0x41	-1 mV
0x7F	-63 mV

Table 21: Sine and cosine offset adjustment

Phase adjustment

The phase between sine and cosine is adjusted by PH_x (6:0). The compensation range for the master track is approx. $\pm 6^{\circ}$. The compensation range for the nonius track is nearly twice as large and is approx. $\pm 11.25^{\circ}$.

PH_M(6:0)	Addr. 0x04; bit 6:0
Code	Function
0x00	0°
	+6°*PH_M/63
0x3F	+6°
0x40	0°
	-6°*(PH_M-64)/63
0x7F	-6°

Table 22: Master track phase adjustment

Rev E3, Page 22/68

PH_N(6:0)	Addr. 0x0A; bit 6:0
Code	Function
0x00	0°
	+ 11.25°*PH_N/63
0x3F	+ 11.25°
0x40	0°
	- 11.25 °*(PH_N-64)/63
0x7F	- 11.25 °

Table 23: Nonius track phase adjustment

Rev E3, Page 23/68

ANALOG SIGNAL CONDITIONING FLOW: x = M,N

For the purpose of signal conditioning iC-MU has several settings that make internal reference values and the amplified Hall voltages of the individual sensors accessible at the outer pins of PORT B for measurement. This allows the settings of the amplifier (GC_x, GF_x), the amplitude ratio of cosine to sine signal (GX_x), and the offset (VOSS_x, VOSC_x) and phase (PH_x) of the master (x = M) and nonius tracks (x = N) to be directly observed on the oscilloscope.

Note:

For an easy installation and setup, the analog and the track offset SPON correction should be done by using the automatic calibration functions of the GUI software (or DLL) available for iC-MU. All necessary steps are described in the iC-MU application note AN3: http://www.ichaus.de/MU_AN3_appnote_en

Test mode can be programmed using register TEST (address 0x18). The individual test modes are listed in Table 24 and 25.

Note:

MODEB must be set to 0x0 before selecting a test mode. In test mode 0x1F (Analog REF) I2C communication is disabled.

Test Mode output signals					
Mode	TEST	Pin PB0	Pin PB1	Pin PB2	Pin MTC
Normal	0x00				
Analog REF	0x1F	VREF	VBG	IBM	-
Digital CLK	0x26	-	-	-	CLK

Table 24: Test modes for signal conditioning

1. Conditioning the BIAS current

First of all, the internal bias is set. The BIAS current is adjustable in the range of -40 % to +35% to compensate variations of this current and thus differences in characteristics between different iC-MU (e.g. due to manufacturing variations). The nominal value of 200 μA is measured as a short-circuit current at pin PB2 referenced to VNA in test mode 0x1F.

Additionally various internal reference voltages are available for measuring in this test mode. VREF corresponds to half the supply voltage (typically 2.5 V) and is used as a reference voltage for the hall sensor signals. VBG is the internal bandgap reference (1.25 V)

Alternatively the frequency at Pin MTC can be adjusted to 405 kHz ($\frac{fosc}{64}$, see elec. char. no.: 407) using register value CIBM in test mode 0x26, if an analog measuring of the current is not possible.

Test mode output signals					
Mode	TEST	Pin PB0	Pin PB1	Pin PB2	Pin PB3
Normal	0x00				
Analog Master	0x01	PSM	NSM	PCM	NCM
Analog CNV_M	0x03	PSIN_M	NSIN_M	PCOS_M	NCOS_M
Analog Nonius	0x11	PSN	NSN	PCN	NCN
Analog CNV_N	0x13	PSIN_N	NSIN_N	PCOS_N	NCOS_N

Table 25: Test modes and available output signals

The output signals of the signal path are available as differential signals with a mean voltage of half the supply voltage and can be selected for output according to Table 25.

2. Positioning of the sensor

Next, the sensor should be adjusted in relation to the magnetic code carrier. The value of MPC (Table 54) has to be selected according to the magnetic code carrier. The register values for VOSS_x, VOSC_x, GX_x and PH_x are set to 0. The chip position will now be displaced radially to the magnetic code carrier until the phase shift between the sine and cosine is 90°.

Depending on the mounting of the system it may be necessary to displace iC-MU tangentially to the magnetic code carrier to adjust the amplitude between the sine and cosine signals.

A fine adjustment of the analog signals is made with the registers described in the chapter SIGNAL CONDI-TIONING FOR MASTER AND NONIUS CHANNELS page 20.

The adjustment should be made in the order:

- 1. phase
- 2. amplitude
- 3. offset

3.a Test modes analog master and analog nonius

In these test modes the amplified, conditioned signals are presented to port B. These signals can be charged with a maximum of 1 mA and should not exceed a differential voltage of 0.5 Vpp.

3.b Test mode CNV_x

In this test mode the sensor signals are present at port B as they are internally for further processing on the interpolator. The achievable interpolation accuracy is determined by the quality of signals PSIN_x/NSIN_x and PCOS_x/NCOS_x and can be influenced in this test mode by adjustment of the gain, amplitude ratio,

Rev E3, Page 24/68

offset, and phase. The signals must be tapped at high impedance.

4. Track offset SPON

After the analog adjustment of the master and nonius track the absolute system must be electrically calibrated for maximum adjustment tolerance. See page 41 ff.

Rev E3, Page 25/68

EEPROM AND 12C INTERFACE

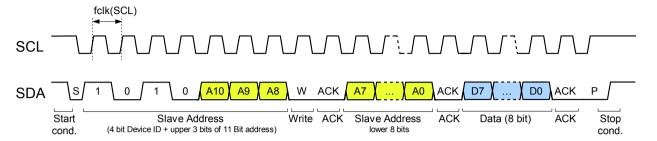


Figure 13: I²C slave addressing for writing a single byte to the EEPROM.

Basic interface features

I2C Master Performance		
Protocol	Standard I ² C	
Clock Rate (Output)	70/80 kHz max. (refer to Elec.Char. 808)	
Addressing	11 bit: 8 bit register address plus 3 bit block selection	
Multi-Master Capability	Yes	

Table 26: I²C interface performance

ATTENTION: EEPROMs which consider block selection bits as "don't care" should not be used. This can be the case with 8-pin devices, as well as with 5-pin devices not featuring A2, A1, A0 pins.

Be aware of potential conflicts:

If a user tries to access memory beyond the 2 Kbit range, the iC-MU configuration data will be overwrit-

If further I²C slave devices are operated on the same bus, higher device addresses may be occupied.

The multimaster-I2C interface enables read and write access to a serial EEPROM. The basic EEPROM requirements are summarized in Table 27.

CRC checksums

CRC16(7:0)

CRC16(15:8)

CRC16(7:0)*)

CRC16(15:8)*)

Code

Notes:

Meaning

The configuration data in the EEPROM in address range 0x00 to 0x20 and 0x30 to 0x3F is secured with a 16 bit CRC (CRC16). The start value for the CRC16 calculation is 1.

Addr. 0x22; bit 7:0

Addr. 0x21; bit 7:0

*) Access only via SPI interface

**) $x^{16} + x^{12} + x^{5} + 1$, start value 0x1 This is equivalent to CRC-CCITT/CRC-16

Table 28: EEPROM data checksum

Addr. SER: 0x80; bit 7:0

Addr. SER: 0x81; bit 7:0

CRC formed with CRC polynomial 0x11021**)

EEPROM device requirements

EEPROM Device Requirements		
Supply Voltage	2.5 V to 5.5 V	
	(respectively according to VPA/VPD)	
Power-On Threshold	< 3.6 V (due to Elec.Char. 404)	
Addressing	11 bit address max.	
Device Address	0x50 ('1010 000' w/o R/W bit),	
	0xA0 ('1010 0000' with R/W = 0)	
Page Buffer	Not required	
Size Min.	1 Kbit (128x8 bit), type 24C01,	
	for configuration data	
Size Max.	16 Kbit (8x 256x8 bit), type 24C16	
	Size limited due to 11-bit slave	
	addressing.	

r-On Threshold	< 3.6 V (due to Elec.Char. 404)
essing	11 bit address max.
e Address	0x50 ('1010 000' w/o R/W bit), 0xA0 ('1010 0000' with R/W = 0)
Buffer	Not required
Min.	1 Kbit (128x8 bit), type 24C01, for configuration data
Мах.	16 Kbit (8x 256x8 bit), type 24C16 Size limited due to 11-bit slave addressing.

The offset and preset position for iC-MU's preset sequence is not part of the configuration data area. The data is located in address range 0x23 to 0x2E of the EEPROM and is secured separately with a 8-bit CRC (CRC8). The start value for the CRC8 calculation is 1.

Table 27: EEPROM Device Requirements

It is not relevant if the EEPROM's internal page buffer is 8 or 16 bytes. EEPROMs beyond 16 Kbit can not be used as those require a 2 byte address.

Rev E3, Page 26/68

CRC8(7:0)	Addr. 0x2F; bit 7:0
CRC8(7:0)*)	Addr. SER: 0x82; bit 7:0
Code	Meaning
	CRC formed with CRC polynomial 0x197**)
Notes:	*) Access only via SPI interface **) $x^8 + x^7 + x^4 + x^2 + x^1 + 1$, start value 0x1

Table 29: Offset/preset data checksum

iC-MU calculates CRC8 and CRC16 automatically when writing the configuration to the EEPROM. However, an example of a CRC calculation routine is given in Tab. 31. The serial interface allows to access the CRC8 and CRC16 values only in SPI mode. CRC16 and CRC8 are checked on startup. A cyclic check during operation can be configured with NCHK_CRC. With the command CRC_VER (s. Tab. 104) a CRC check can be explicitly requested. An error is signaled by status bit CRC_ERR.

NCHK_CRC	Addr. 0x0D; bit 6	
Code	Meaning	
0	cyclical CRC check of CRC16 and CRC8	
1	no cyclical CRC check	
Notes:	For max. duration of the internal cyclic checks see elec. char. no. 408	

Table 30: Cyclic CRC check

```
unsigned char ucDataStream = 0;
int iCRC_CRC8Poly = 0x97;
unsigned char ucCRC8;
int i = 0;

ucCRC8 = 1; // start value !!!
for (iReg = 35; iReg < 47; iReg ++)
{
   ucDataStream = ucGetValue(iReg);
   for (i=0; i <=7; i++) {
      if ((ucCRC8 & 0x80) != (ucDataStream & 0x80))
            ucCRC8 = (ucCRC8 << 1) ^ iCRC_CRC8Poly;
   else
      ucCRC8 = (ucCRC8 << 1);
   ucDataStream = ucDataStream << 1;
}
}</pre>
```

Table 31: Example of CRC calculation routine using CRC8

Rev E3, Page 27/68

STARTUP BEHAVIOR

After switching on the power (power-on reset) iC-MU reads the configuration data out from the EEPROM. If an error occurs during the EEPROM data readout (a CRC error or communication fault with the EEPROM), the current read-in is aborted and restarted. Following a third faulty attempt the read-in process is terminated and the internal iC-MU configuration register initialized as in Tab. 33. The addresses are referenced to the register allocation for an register access through the serial interface s. p. 51.

Note: After the third faulty attempt to read-in the configuration data from the EEPROM the default value of MODEA is set to BiSS or SPI depending on the logic level at pin PA0 (PA0=0 \rightarrow BiSS, PA0=1 \rightarrow SPI).

Pin PA0	I/O Interface	Data length
0	BiSS	32 bit (24 bit + 2 bit E/W + 6 bit CRC)
1	SPI	24 bit

Table 32: Default interface depending on PA0

The amplitude control is started after the read-in of the EEPROM. To determine the absolute position a nonius calculation is started. An external multiturn is read-in if configured. If there is an error the multiturn read-in is repeated until no multiturn error occurs. The status bit MT_ERR is set in this case, register communication is possible. The ABZ/UVW-converter is only started if there was no CRC_ERR, EPR_ERR, MT_ERR or MT_CTR error during startup. The startup behaviour is described in Figure 14.

Default values				
Bank	Addr. (serial access)	value	Meaning	
0	0x05	0x88	Amplitude control active (ENAC=1), CIBM = 0%	
0	0x0B	0x02	$\begin{array}{l} \text{PA0=0} \rightarrow \text{BiSS interface} \\ \text{(MODEA=0x2),} \\ \text{ABZ Incremental} \\ \text{(MODEB=0x0)} \end{array}$	
0		0x00	PA0=1 → SPI interface (MODEA=0x0), ABZ Incremental (MODEB=0x0)	
0	0x0E	0x06	FILTER activated	
0	0x0F	0x05	32 pole pairs master track	
0	0x10	0x00	no Multiturn, Nonius check active	
0	0x11	0xA5	5 bit Nonius information, 5 Zeros added	
0	0x12	0x00	output with max. resolution	
0	0x13	0xFF	resolution 16384 edges	
0	0x14	0x0F		
0	0x15	0x13	up to 12000 rpm (SS_AB=0x1), 266ns minimum edge distance	
0	0x16	0x10	90° Index, 0.175° Hysteresis	
0	0x17	0x02	1 pole pair commutation	
-	0x78	0x4D	\simeq M	
-	0x79	0x55	\simeq U	
-	0x7A	HARD_REV	s. Tab. 94	
-	0x7E	0x69 ≃ i		
-	0x7F	0x43		
Notes:	all other registers are preset with 0 Register assignment for register access through serial interface s.p. 51			

Table 33: Default configuration without the EEPROM

Rev E3, Page 28/68

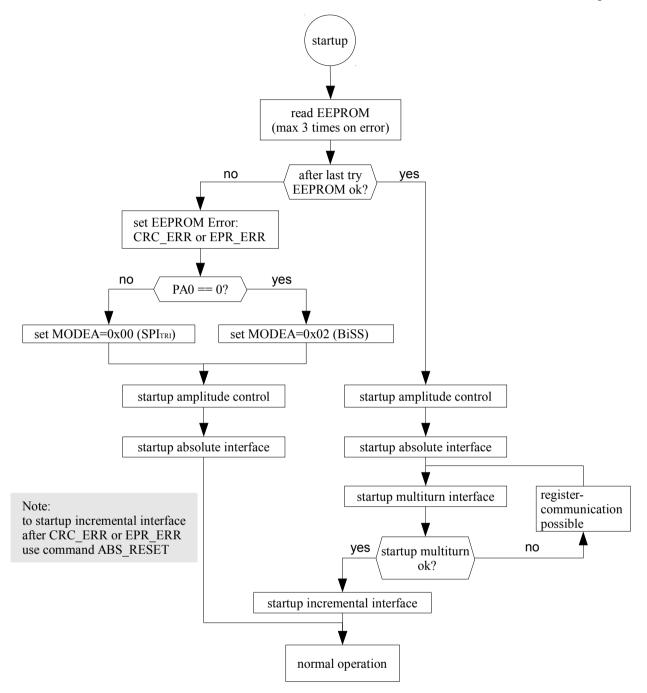


Figure 14: Startup behavior

Rev E3, Page 29/68

CONFIGURABLE I/O INTERFACE

Setting the interfaces

iC-MU has several configurable output modes which can be set using parameters MODEA and MODEB. The pins at port A are set with MODEA. The choice of a serial interface at port A has also effect on the output of error and warning bits in the serial protocol see Table 37.

Note:

With an empty EEPROM or after the third faulty attempt to read-in the configuration data from the EEP-ROM the default value of MODEA is set to BiSS or SPI depending on the logic level at pin PA0 (PA0=0 \rightarrow BiSS, PA0=1 \rightarrow SPI).

MODEA(2:0)		Addr. 0x	0B; bit 2	:0	
Code	PA0	PA1	PA2	PA3	Function
0x0	NCS	SCLK	MOSI	MISO	SPI _{TRI}
0x1	NCS	SCLK	MOSI	MISO	SPI
0x2	NPRES	MA	SLI	SLO	BiSS
0x3	NPRES	Α	В	Z	ABZ *)
0x4	NPRES	MA	SLI	SLO	SSI **)
0x5	NPRES	MA	SLI	SLO	SSI+ERRL
0x6	NPRES	MA	SLI	SLO	SSI+ERRH
0x7	NPRES	MA	SLI	SLO	ExtSSI

Note: *) to save this configuration in the EEPROM see command SWITCH page 59 ff.

Table 34: Port A configuration

The pins at port B are set with MODEB.

MODEB(2:0)		Addr. 0x	0B; bit 6:	:4	
Code	PB0	PB1	PB2	PB3	Function
0x0	Α	В	Z	NER*	ABZ
0x1	U	V	W	NER*	UVW
0x2	STEP	DIR	NCLR	NER*	Step/Direction
0x3	CW	CCW	NCLR	NER*	CW/CCW Incremental
0x4	NSN	PSN	PCN	NCN	SIN/COS Nonius**
0x5	NSM	PSM	PCM	NCM	SIN/COS Master**
0x6	-	-	-	-	reserved
0x7	-	-	-	-	tristate

Note: *) Pin PB3 (signal NER) is an open-collector output **) NSx, PSx, PCx, NCx vs. GND $V_{pk}()$ = 250 mV, $V_{CM}()$ = VNA/2

Table 35: Port B configuration

Note:

It is not possible to select ABZ at port A and ABZ, Step/Direction or CW/CCW at port B simultaneously.

In operating modes ABZ, UVW, step/direction, and CW/CCW the position is output incrementally. In setting SIN/COS Master the master track analog signal is switched directly to the analog drivers. The signals of the nonius track are available on the drivers with setting SIN/COS Nonius.

^{**)} MT sensor communication not possible (GET_MT = 0)

Rev E3, Page 30/68

Serial interface Configuring the data format and data length

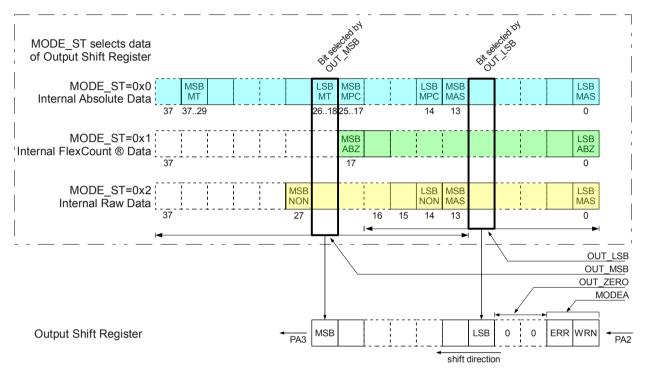


Figure 15: Determining the output data length

The structure of the output shift register is shown in Figure 15. The abbreviation MT stands for the multiturn data, MPC is short for the number of master periods in bit, ABZ for the data whose resolution is specified by the parameter RESABZ (Table 74), NON for the data of the nonius track and MAS for the data of the master track. The numbering of the user data starts at the LSB with zero. OUT_MSB and OUT_LSB determine which part of the user data is output by the output shift register.

MODE_ST selects the type of user data to be output through the output shift register.

MODE_ST(1:0) Addr. 0x12; bit 5:4		
Code	Description		
0x0	0x0 output absolute position		
0x1	output position in user resolution*) (FlexCount®)		
0x2	output raw-data of Master- and Nonius track**)		
0x3	0x3 reserved		
Note:	*) resolution defined by RESABZ (Table 74) **) MPC must be \(\neq 12)		

Table 36: Selection of output data

The number of output bits is determined by parameters OUT_MSB, OUT_LSB, OUT_ZERO and the error/warning bits (see Figure 15 and Table 37):

Data length = 14 + OUT_MSB - OUT_LSB + OUT_ZERO + optional ERR/WRN (depending on MODEA)

There is an exception for the calculation of the output data length. If parameter MPC=12, OUT_LSB = 0 and OUT_MSB > 0x02 the number of output bits is given by:

data_length_2 = OUT_MSB + OUT_ZERO + ERR/WRN (depending on MODEA) - 2

MODEA(2:0) Addr. 0x0B; bit 2:0				
Function	Error		Warning	
	low active	high active	low active	high active
SPI	-	-	-	-
BiSS	✓	-	✓	-
SSI	-	-	-	-
SSI+ERRL	✓	-	-	-
SSI+ERRH	-	✓	-	-
ExtSSI	✓	-	✓	-

Table 37: MODEA: error/warning-bit within serial protocols

OUT_MSB configures the bit of the user data which is output as MSB at pin PA3.

Rev E3, Page 31/68

OUT_MSB(4	1:0) Addr. 0x11; bit 4:0
Code	Description
0x00	MSB = Bit 13
0x01	MSB = Bit 14
0x18	MSB = Bit 37

Table 38: Selection of shift register MSB

OUT_LSB determines the LSB of the user data being output through the output shift register.

OUT_LSB(3	3:0) Addr. 0x12; bit 3:	0
Code	Condition	Description
0x0	MPC = 12, OUT_MSB > 0x02	LSB = Bit 16
	MPC ≠ 12	LSB = Bit 0
0x1	-	LSB = Bit 1
0x2	-	LSB = Bit 2
0xD	-	LSB = Bit 13
0xE	OUT_MSB > 0x00	LSB = Bit 14
0xF	OUT_MSB > 0x01	LSB = Bit 15

Table 39: Selection of shift register LSB

With OUT_ZERO additional zeros to be inserted between the user data and the error/warning bit can be

configured. Parameter OUT_ZERO can be used to achieve multiples of 8 bits when sensor data is output through the SPI interface.

OUT_ZERO	(2:0) Addr. 0x11; bit 7:5		
Code	Description		
0x0	no additional '0' Bit		
0x1	1 additional '0' Bit		
0x7	7 additional '0'-Bits		

Table 40: Selection of additional ZEROs

The direction of rotation can be inverted with parameter ROT. The parameter affects the output of the data word through the serial interface in MODE_ST=0x0 and 0x1, the ABZ-interface and the UVW-interface.

ROT	Addr. 0x15; bit 7
Code	Description
0	no inversion of direction of rotation
1	inversion of rotation
Note:	no effect in MODE_ST = 2 (raw-data) for the data output through the serial interface

Table 41: Inversion of the direction of rotation (for MT and ST data)

Rev E3, Page 32/68

BiSS C Interface

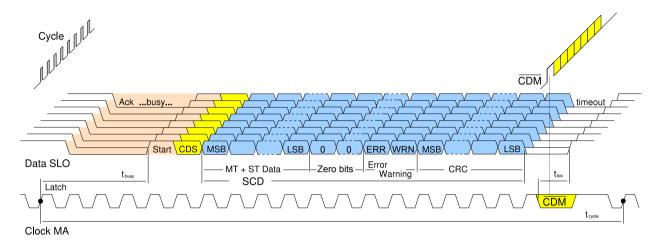


Figure 16: Example of BiSS line signals

MODEA	
Code	Description
0x2	BiSS-C

Table 42: MODEA: BiSS

The BiSS C interface serial bit stream is binary coded. The error and warning bit is low active. Transmission of sensor and register data is implemented. iC-MU needs no processing time, therefore t_{busy} is one master clock cycle. For further information regarding the BiSS-C-protocol visit www.biss-interface.com.

A communication frame ends when the MA pin clock cycles stop. After the last edge on MA the communication timeout begins. The timeout is adaptive and the timeout period t_{out} is calculated based on the first MA edges as shown in Figure 4.

In BiSS protocol iC-MU uses fixed CRC polynomials, see Table 43. The single cycle data (SCD), i.e. the primary data which is newly generated and completely transmitted in each cycle, contains the position data (optional multiturn + singleturn) and the error and warning bit. The CRC value is output inverted.

data- channel*)	CRC HEX Code	Polynomial
SCD (sensor)	0x43	$x^6 + x^1 + x^0$
CDM, CDS (register)	0x13	x ⁴ +x ¹ +x ⁰
Note:	*) explanation s. BiSS-C s	specification

Table 43: BiSS CRC polynomials

Rev E3, Page 33/68

SSI interface

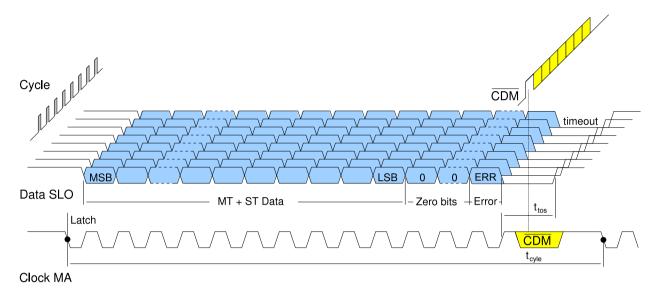


Figure 17: Example of SSI line signals (MODEA=0x5/0x6) with optional unidirectional register communication

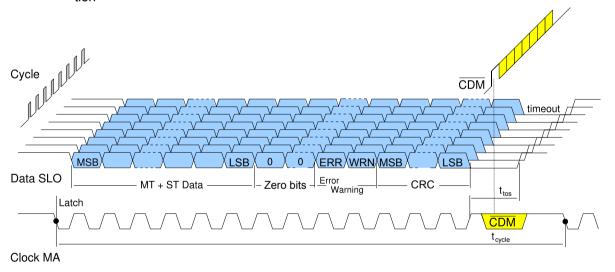


Figure 18: Example of extended SSI line signals (MODEA=0x7, ExtSSI)

MODEA	
Code	Description
0x4	Standard SSI, no error-bit
0x5	Standard SSI, error-bit low active
0x6	Standard SSI, error-bit high active
0x7	extended SSI, data-package like BiSS-C

Table 44: MODEA: SSI

The SSI interface of iC-MU can handle sensor data communication and unidirectional register communication (Advanced SSI protocol see Figure 17). The timeout is

adaptive and the timeout period t_{out} is calculated based on the first MA edges as shown in Figure 6.

In standard SSI mode singleturn data and, optionally, multiturn data, an error, and a stop zero can be transmitted. In extended SSI mode (ExtSSI) the multiturn data (optional), singleturn data, error, warning, and CRC can be read out. All data is sent with the MSB first and is equivalent to the data package that is output through BiSS.

In SSI mode the sensor data can be output in binary or Gray code.

Rev E3, Page 34/68

GSSI ¹	Addr. 0x12; bit 7
Code	Data format
0	binary coded
1	Gray coded

Table 45: Data format (for MT and ST data)

SSI interface ring operation can be activated for the repeated output of position data in SSI protocol. In this mode position data output is repeated cycle by cycle separated by a zero-bit until the internal timeout t_{tos} (p. 13) is reached. After t_{tos} has elapsed a new request can

be made for position data. By checking the repeated position data for equality, SSI ring operation mode enables any possible transmission errors to be detected. If RSSI is deactivated zeros are subsequently output after the position data output.

RSSI	Addr. 0x12; bit 6
Code	Ring operation
0	normal output
1	Ring operation

Table 46: Ring operation

¹ Please refer to the design review on p. 65.

Rev E3, Page 35/68

SPI Interface: general description

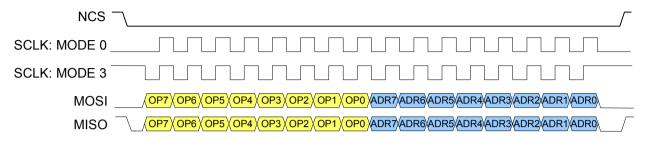


Figure 19: SPI transmission SPI-Mode 0 and 3, using opcode Read REGISTER(single) as an example

MODEA	
Code	Description
0x0	SPI _{TRI}
0x1	SPI

Table 47: MODEA: SPI

In mode SPI_{TRI} MISO (Pin PA3) is set to tristate if the slave is not selected by the master, i.e. NCS=1. This function is used for a parallel SPI bus configuration (Figure 20). In mode SPI the idle state of MISO (Pin PA3) is high if the slave is not selected by the master.



Figure 20: Example configuration SPI bus with 2 parallel Slaves

SPI modes 0 and 3 are supported, i.e. idle level of SCLK 0 or 1, acceptance of data on a rising edge. Data is sent in packages of 8 bits and with the MSB first (see Figure 19). Each data transmission starts with the master sending an opcode (Table 48) to the slave.

The following describes the typical sequence of an SPI data transmission, taking the command **Read REGIS-TER (single)** as an example (see Figure 19):

- 1. The master initializes a transmission with a falling edge at NCS.
- 2. iC-MU passes the level on from MOSI to MISO.

- 3. The master transmits the opcode OP and address ADR via MOSI; iC-MU immediately outputs OP and ADR via MISO.
- 4. The master terminates the command with a rising edge at NCS.
- 5. iC-MU switches its MISO output to 1 (MODEA=0x1) or tristate (MODEA=0x0).

OPCODE	
Code	Description
0xB0	ACTIVATE
0xA6	SDAD-transmission (sensor data)
0xF5	SDAD Status (no latch)
0x97	Read REGISTER(single) ²
0xD2	Write REGISTER (single) ²
0xAD	REGISTER status/data

Table 48: SPI OPCODEs

For the setup to be compatible with SPI protocol, when setting the sensor data length for the command "SDAD transmission" with parameters OUT_MSB, OUT_LSB, and OUT_ZERO, it must be ensured that the output data length is a multiple of 8 bits.

SPI Interface: Command ACTIVATE

Each iC-MU has one RACTIVE and one PACTIVE register. These registers are used pairwise to configure the register data channel and the sensor/actuator data channel of a slave.

Using the **ACTIVATE** command, the register and sensor data channels of the connected slaves can be switched on and off. The command causes all slaves to switch their RACTIVE and PACTIVE registers between MOSI and MISO and set them to 0 (slaves in daisy chain connection, Figure 23). The register and

² Please refer to the design review on p. 65.

Rev E3, Page 36/68

sensor/actuator data channels can be switched on and off with data bytes following the OPCODE.

After startup of iC-MU RACTIVE and PACTIVE is set to 1

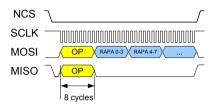


Figure 21: Set ACTIVATE: RACTIVE/PACTIVE (several slaves)

The **ACTIVATE** command resets the bits FAIL, VALID, BUSY, and DISMISS in the SPI-STATUS byte (see Table 52).

RACTIVE	
Code	Description
0	Register communication deactivated
1	Register communication activated*)
Note	*) default after startup

Table 49: RACTIVE

If RACTIVE is not set, on commands Read REGISTER (single), Write REGISTER (single), REGISTER status/data the ERROR bit is set in the SPI-STATUS byte (see Table 52) to indicate that the command has not been executed. At MISO the slave immediately outputs the data transmitted by the master via MOSI.

PACTIVE	
Code	Description
0	Sensor data channel deactivated
1	Sensor data channel activated*)
Note	*) default after startup

Table 50: PACTIVE

If PACTIVE is not set, on commands **SDAD status** and **SDAD transmission** the ERROR bit is set in the SPI-STATUS byte (see Table 52) to indicate that the command has not been executed. At MISO the slave immediately outputs the data transmitted by the master via MOSI.

If only one slave is connected up with one register and one sensor data channel, it must be ensured that the RACTIVE and PACTIVE bits come last in the data byte.

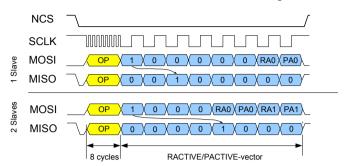


Figure 22: Set ACTIVATE: RACTIVE/PACTIVE (Example with one and two slaves (daisy chain))

An example for a daisy chain wiring of 2 SPI slaves is given in Figure 23. In order to do register communication (Read REGISTER (single), Write REGISTER (single), REGISTER status/data) with e.g. slave (1) the register communication has to be enabled explicitly for this slave and disabled for slave (0) with command ACTIVATE and parameter RACTIVE.

Figure 23: Example configuration with 2 Slaves (daisy chain)

SPI interface: Command SDAD transmission

iC-MU latches the absolute position on the first rising edge at SCLK, when NCS is at zero (e.g. Figure 24 LATCH). Because iC-MU can output the sensor data (SD) immediately, the master can transmit the **SDAD transmission** command directly. The sensor data shift register (the size of which is 8 to 40 bits in multiples of 8 using iC-MU) is switched and clocked out between MOSI and MISO.

If invalid data is sampled in the shift register, the ER-ROR bit is set in the SPI-STATUS byte (see Table 52) and the output data bytes are set to zero.

Rev E3, Page 37/68

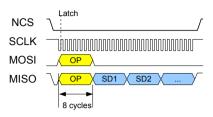


Figure 24: SDAD transmission: read SD

Note: iC-MU latches the absolute position on the first rising edge at SCLK, when NCS is at zero (e.g. Figure 24 - LATCH).

SPI interface: Command SDAD status

If the master does not know the processing time of the connected slaves, it can request sensor data using the command **SDAD status**. The command causes:

- All slaves activated via PACTIVE to switch their SVALID register between MOSI and MISO.
- The next request for sensor data started with the first rising edge at SCLK of the next SPI communication is ignored by the slave.

The end of conversion is signaled by SVALID (SV). Using this command, the master can poll to the end of conversion. The sensor data is read out via the command **SDAD transmission**.

SVALID	
Code	Description
0	Sensor data invalid
1	Sensor data valid

Table 51: SVALID

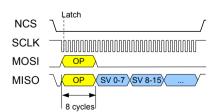


Figure 25: SDAD status

If only one slave is connected, the corresponding SVALID bit (SV0) is placed at bit position 7 in the SVALID byte.

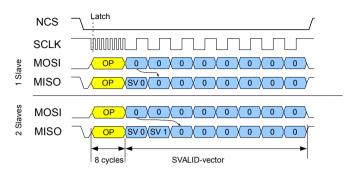


Figure 26: SDAD status (Example with one and two slaves)

Figure 27 shows the interaction of the two commands SDAD Status and SDAD transmission. It is not necessary to start each sensor data communication with the command SDAD Status (1). iC-MU has no processing time and can therefore directly output valid sensor data. Because of that the command sequence can start with SDAD-transmission (2). Following this, the command REGISTER status/data should be executed to detect an unsuccessful SPI communication.

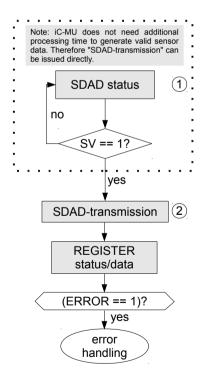


Figure 27: Example sequence of the commands SDAD Status/SDAD-transmission

SPI interface: Command Read REGISTER (single)

This command enables register data to be read out from the slave byte by byte.

The master first transmits the **Read REGISTER** (single) command and then address ADR. The slave immediately outputs the command and address at MISO.

Rev E3, Page 38/68

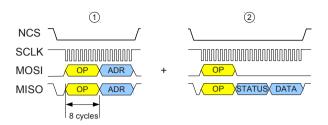


Figure 28: Read REGISTER (single): set the read address (1) + command REGISTER status/data to read-out data (2)

Following this, using the **REGISTER status/data** command (see page 38) the master can poll until the validity of the DATA following the SPI-STATUS byte is signaled via SPI-STATUS.

SPI interface: Command Write REGISTER (single) This command enables data to be written to the slave byte by byte.

The master first transmits the **Write REGISTER** (single) command and then address ADR and the data (DATA). The slave immediately outputs the command, address, and data at MISO.

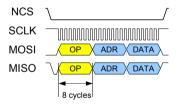


Figure 29: Write REGISTER (single); set write address and data

Using the **REGISTER status/data** command, the master can poll to the end of communication (signaled via the SPI-STATUS byte).

SPI interface: Command REGISTER status/data

The **REGISTER status/data** command can be used to request the status of the last register communication and/or the last data transmission. The SPI-STATUS byte contains the information summarized in Table 52.

SPI-STATUS	SPI-STATUS			
Bit	Name	Description of the status report		
Status bits	of the SDAD and register	communication		
7	ERROR	Opcode not implemented, Sensor data was invalid on readout		
64	-	Reserved		
Status bits	of the register communic	ation only		
3	DISMISS	Address rejected		
2	FAIL	Data request has failed		
1	BUSY	Slave is busy with a request		
0	VALID	DATA is valid		
Note	Display logic: 1 = true, 0 = false			

Table 52: Communication status byte

All SPI status bits are updated with each register access. The exception to the rule is the ERROR bit; this bit indicates whether an error occurred during the last SPI-communication with the slave.

The master transmits the **REGISTER status/data** opcode. The slave immediately passes the opcode on to MISO. The slave then transmits the SPI-STATUS byte and a DATA byte.

Following the commands **Read REGISTER** (single) and **Write REGISTER** (single), the validity of the DATA byte is signaled with the VALID status bit.

The requested data byte is returned via DATA following the **Read REGISTER (single)** command. Following the **Write REGISTER (single)** command, the data to be written is repeated in the DATA byte. With all other opcodes, the DATA byte is not defined.

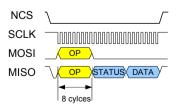


Figure 30: REGISTER status/data

Figure 31 shows the interaction of the commands **REG-ISTER read/write** and **REGISTER status/data**.

Rev E3, Page 39/68

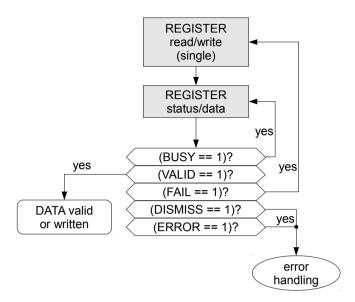


Figure 31: Example sequence of commands REG-ISTER read/write and REGISTER status/data

Rev E3, Page 40/68

CONVERTER AND NONIUS CALCULATION

Converter principle

The system consist of two real-time tracking converters. each with a resolution of 12 bits for the master track and nonius track. Above the maximal permissible input frequency the status bits FRQ CNV is set. The tracking converter can't follow the input signal any more. With a filter setting of type FILT1 and bigger an increased resolution of 14 bits is available.

A digital filter can be configured with FILT to reduce the noise of the digital output signals. Using this the digital angle values of the tracking converter can be filtered.

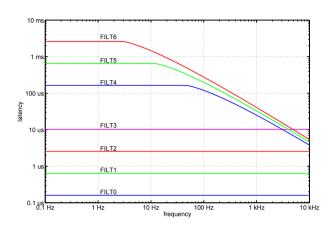


Figure 33: Filter latency

FILT Addr. 0x0E; bit 2:0 Noise sup-Interpol. Code Type Latency MAS/NON (see Figure 33) pression 0x0 FILT0 0 dB 12 bit < 1 µs FILT1 15 dB < 1 µs 14 bit 0x1 FILT2 21 dB 0x2 $2.5 \, \mu s$ 14 bit 0x3 FILT3 27 dB 10 µs 14 bit FILT4 39 dB $f_{sin} < 50 \, Hz$: 164 µs 0x4 14 bit $f_{sin} = 1 \, kHz$: 25 µs 0x5 FILT5 45 dB 14 bit $f_{sin} < 12 \, Hz$: 650 µs $f_{sin} = 1 \text{ kHz}$: 33 µs 0x6 FILT6 51 dB $f_{sin} < 3$ Hz: 2.6 ms 14 bit $f_{sin} = 1 \, kHz$: 41 µs Note Influences on the max. rotation speed with

Table 53: Digital filter features

incremental output signals are shown in table 80

phase elec. [deg] FILT2 0.3 FILT FILTO 10¹ 10 sine frequency [Hz]

Figure 32: Phase relationship of the filters

Synchronization mode

Table 54 lists the configurable master period counts and the resulting bit lengths for nonius synchronization, and the synchronization bit length used. The parameter MPC defines thus the nonius system and has to be chosen according to the magnetic code carrier. If MPC is switched during operation, command ABS RESET must be executed and the track offset values must be calibrated again.

MPC(3:0)	Addr. 0x0F; bit 3:0			
Code	Master period count	Nonius period count	Bit length	Synchroni- sation bit length
0x4	16	15	4	8
0x5	32	31	5	7
0x6	64	63	6	6
for MU as N	for MU as Nonius-Multiturn *)			
0x7	128	127	7	5
0x8	256	255	8	4
0x9	512	511	9	3
0xA	1024	1023	10	2
0xB	2048	2047	11	1
0xC	4096	4095	12	0
Note	*) see page 45			

Table 54: Master period count and the resulting bit lengths

LIN selects the hall sensor arrangement to linear or rotative for axial or radial/linear scanning (see table 55).

Rev E3, Page 41/68

LIN	Addr. 0x0E; bit 4		
Code	Hall sensor arrangement	Type of target magnetization	
0	Rotative	Axial (e.g. MU2S 30-32N)	
1	Linear	Radial (e.g. MU7S 25-32N) or Linear (e.g. MUxL)	

Table 55: Selection of linear/rotative hall sensors

An offset between the nonius track and the master track within one revolution can be adjusted with SPO_BASE and SPO \times (x=0-14).

The following formula describes how the error curve based on the raw data from the master and nonius track can be calculated. 2^{MPC} is the number of sine periods of the measuring distance.

$$TOL_{SPON} = RAW_{MASTER} - RAW_{NONIUS} * \frac{2^{MPC}}{2^{MPC} - 1}$$

The maximum tolerable phase deviation for a 2-track nonius system is shown in Table 56. For the tolerable phase deviation of a 3-track nonius system please refer to Table 70 page 45.

		Permissible Max. Phase Deviation
Periods/revolution		[given in degree per signal period of 360°]
Master	Nonius	Master ↔ Nonius
16	15	+/- 9.84°
32	31	+/- 4.92°
64	63	+/- 2.46°

Table 56: Tolerable phase deviation for the master versus the nonius track of a 2 track nonius system (with reference to 360°, electrical)

An offset correction curve can be specified with SPO_BASE and SPO_x (x = 0-14). SPO_BASE is the start-value. SPO_0 to SPO_14 can be interpreted as slope-values. A change in the slope of the offset function can be made each 22.5°. The slope value SPO_15 is computed automatically by iC-MU. To do this the following condition must be met:

$$\sum_{x=0}^{14} SPO_x = \{-7...7\}$$

The offset value between two slopes (e.g. SPO_0 and SPO_1) is interpolated. The computed offset is added to the converted result of the nonius track prior to synchronization and is used to calibrate the nonius to the master track. An offset value is chosen by the absolute position given by the nonius difference (master-nonius).

SPO_BASE	(3:0) Addr. 0x19; bit 3:0
SPO_BASE	(3:0) Addr. SER:0x52; bit 3:0
Code	Starting point referred to 1 revolution
0x0	$0 * (22.5^{\circ}/2^{MPC})$
0x7	7 * (22.5°/2 ^{MPC})
0x8	-8 * (22.5°/2 ^{MPC})
0x9	-7 * (22.5°/2 ^{MPC})
0xF	-1 * (22.5°/2 ^{MPC})

Table 57: Nonius track offset start value

SPO_0(3:0)	Addr. 0x19; bit 7:4 Addr. SER: 0x52		
SPO_1(3:0)	Addr. 0x1A; bit 3:0 Addr. SER: 0x53		
SPO_2(3:0)	Addr. 0x1A; bit 7:4 Addr. SER: 0x53		
SPO_3(3:0)	Addr. 0x1B; bit 3:0 Addr. SER: 0x54		
SPO_4(3:0)	Addr. 0x1B; bit 7:4 Addr. SER: 0x54		
SPO_5(3:0)	Addr. 0x1C; bit 3:0 Addr. SER: 0x55		
SPO_6(3:0)	Addr. 0x1C; bit 7:4 Addr. SER: 0x55		
SPO_7(3:0)	Addr. 0x1D; bit 3:0 Addr. SER: 0x56		
SPO_8(3:0)	Addr. 0x1D; bit 7:4 Addr. SER: 0x56		
SPO_9(3:0)	Addr. 0x1E; bit 3:0 Addr. SER: 0x57		
SPO_10(3:0	Addr. 0x1E; bit 7:4 Addr. SER: 0x57		
SPO_11(3:0	Addr. 0x1F; bit 3:0 Addr. SER: 0x58		
SPO_12(3:0	Addr. 0x1F; bit 7:4 Addr. SER: 0x58		
SPO_13(3:0	Addr. 0x20; bit 3:0 Addr. SER: 0x59		
SPO_14(3:0	O) Addr. 0x20; bit 7:4 Addr. SER: 0x59		
Code	Slope referred to 1 revolution		
0x0	0 * (22.5°/2 ^{MPC})		
0x7	7 * (22.5°/2 ^{MPC})		
0x8	-8 * (22.5°/2 ^{MPC})		
0x9	-7 * (22.5°/2 ^{MPC})		
0xF	-1 * (22.5°/2 ^{MPC})		
Note	$\sum_{x=0}^{14} SPO_x = \{-77\} * (22.5^{\circ}/2^{MPC})$		

Table 58: Nonius track offset slopes

SPO_15(3:0	Addr. SER:0x5A; bit 3:0
Code	Slope
0x0	-
	is automatically computed: $-\sum_{x=0}^{14} SPO_x$
0xF	-
Note	internal register, not readable via serial interface

Table 59: Nonius track offset slope (is automatically computed)

The principle is shown in Figure 34. The red curve corresponds to the error curve of the nonius difference absolute within 360°. By taking the blue marked SPO_x curve it is shown, that the nonius difference can be changed in a way that the resulting green curve is in the valid synchronisation range. It can be seen that

Rev E3, Page 42/68

an error within 22.5° (in the Figure between 67.5° and 90°) can not be corrected. For SPO_0 the range of a possible slope change is exemplary shown.

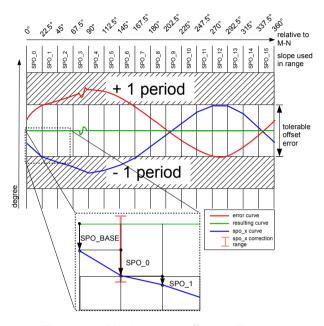


Figure 34: Nonius track offset calibration

Following the first nonius synchronization the number of exceeded periods is counted and output. Using NCHK_NON the system can be configured to check the internal period counter against the period given by the code disc at regular intervals. Command NON_VER explicitly requests nonius verification. If an error is found during verification of the nonius, bit NON_CTR is set in status register STATUS1.

Figure 35 describes the principle of nonius synchronization with verification, with φ representing the respective digitized angle of the relevant track.

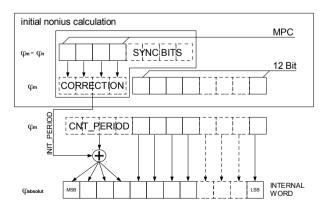


Figure 35: Principle of nonius synchronization

NCHK_NON	N Addr. 0x0D; bit 5			
Code	Description			
0	automatic period verification			
1	no automatic period verification			
Notes:	For max. duration of the internal cyclic checks see elec. char. no. 408			

Table 60: Automatic nonius period verification

The nonius data and incremental interface can be automatically reset with ACRM_RES if the master amplitude is too low. The incremental section is reset as soon as the amplitude control unit indicates that the master amplitude is too low (AM_MIN occurs, see Table 98). The ABZ-interface shows position 0 as default. When the master amplitude is again in its set range, a new nonius calculation is carried out and the incremental section is restarted.

ACRM_RES	Addr. 0x0D; bit 4	
Code	Description	
0	no automatic reset	
1	automatic reset active	

Table 61: Automatic Reset triggered by AM_MIN

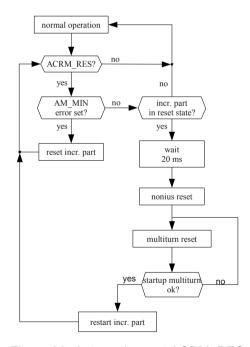


Figure 36: Automatic reset ACRM_RES

Rev E3, Page 43/68

MT INTERFACE

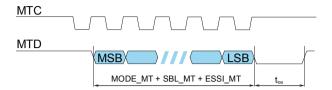


Figure 37: Example of multiturn SSI line signals

Configuration of the Multiturn interface

iC-MU can read and synchronize binary data from an external SSI sensor through the serial multiturn interface. On startup the first data value read in determines the start value of the internal MT counter. After startup the multiturn counter counts the ST cycles. If there is an error reading the external multiturn during startup, the read-in will be repeated.

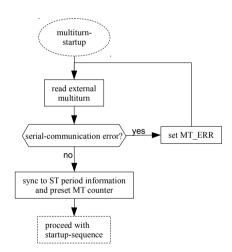


Figure 38: Error handling during startup

If the MT interface is not used (MODE_MT = 0x0), the internal 24-bit MT counter can extend the singleturn information to include the counted ST cycles. To access the internal MT counter increase parameter OUT_MSB accordingly.

For exclusive multiturn systems a 4, 8, 12, 16 or 18-bit multiturn data value can be read in (MODE_MT = 0xB-0xE).

There is also the possibility to interpret a part of the external multiturn data value as singleturn data (MODE_MT = 0x1-0xA). This influences the incremental output signals, UVW commutation signals and data output in MODE_ST = 0x01 (FlexCount®). For further information see Construction of a Multiturn system with two iC-MU p. 45.

MODE_MT(3:0) Addr. 0x10; bit 3:0			
Code	Function	Code	Function
0x0	no external data	0x8	4 *) + 12 bit
0x1	1 *) bit	0x9	5 *) + 12 bit
0x2	2 *) bit	0xA	6 *) + 12 bit
0x3	3 *) bit	0xB	4 bit
0x4	4 *) bit	0xC	8 bit
0x5	5 *) bit	0xD	12 bit
0x6	6 *) bit	0xE	16 bit
0x7	3 *) + 12 bit	0xF	18 bit
Notes:	*) data interpreted as ST		
	If MPC \geq 0x07 than MODE_MT has to be set to 0x0 or 0xD		

Table 62: MT interface operating mode

For synchronization a synchronization bit length must be set with SBL_MT. Synchronization takes place between the external multiturn data read in and the ST period information counted internally (see Fig. 40). Synchronization can take place automatically within the relevant phase tolerances.

SBL_MT(1:	SBL_MT(1:0) Addr. 0x10; bit 5:4			
Code	MT synchronisation bit length	synchronisation tolerance (ST-resolution)		
0x0	1 bit	±90°		
0x1	2 bit	±90°		
0x2	3 bit	± 135°		
0x3	4 bit	± 157.5°		

Table 63: MT synchronization bit length

Figure 39 shows the principle of a 2 bit MT synchronization for ideal signals (without indication of synchronization tolerance limits).

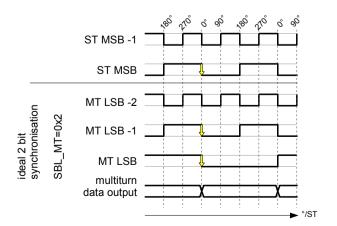


Figure 39: Principle of 2 bit MT synchronization

Rev E3, Page 44/68

The direction of rotation of the read multiturn data can be inverted using parameter ROT_MT.

ROT_MT	Addr. 0x0E; bit 5
Code	Function
0	no inversion of code direction
1	inversion of code direction

Table 64: Inverted direction of rotation of external multiturn

The parameter ESSI_MT configures the evaluation of an optional error-bit send by the external multiturn device.

ESSI_MT	Addr. 0x0E; bit 7:6
Code	Function
0x0	no error bit
0x1	1 error-bit low active
0x2	reserved
0x3	1 error-bit high active

Table 65: Evaluation of an error-bit of the external multiturn

The SSI parity and warning bit are not supported by iC-MU and need to be deactivated in the external multi-turn sensor.

The total data length of the external read multiturn data word is determined by:

data_length_ext_mt = Bits(MODE_MT) + Bits(SBL_MT) + Bits(ESSI_MT)

The parameter SPO_MT allows to balance an existing static offset between the singleturn and the multiturn. The offset is added before the synchronization of the read multiturn data (see Fig. 40).

SPO_MT	Addr. 0x0F; bit 7:4
Code	Function
0x0	
	multiturn offset
0xF	

Table 66: Offset of external multiturn

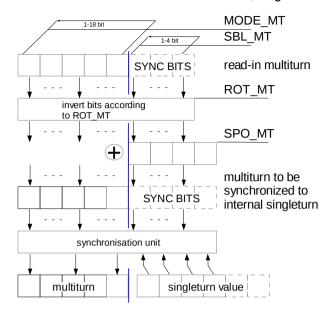


Figure 40: Parameters to configure external multiturn

CHK_MT can be used to verify the counted multiturn at regular intervals. Verification can also be requested using command MT_VER. A multiturn verification error (comparison of the internal MT counter with the external multiturn data) is reported on status bit MT_CTR.

CHK_MT	Addr. 0x10; bit 6
Code	Function
0	no verification
1	periodical verification
Notes:	For max. duration of the internal cyclic checks see elec. char. no. 408

Table 67: Multiturn verification

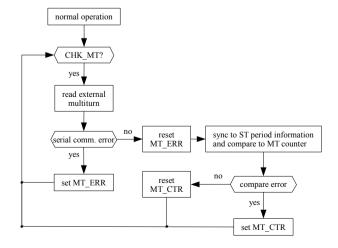


Figure 41: Error handling in normal operation with cyclic verification of the period counter

Rev E3, Page 45/68

Construction of a Multiturn system with two iC-MU

A 3 track nonius system can be build using two iC-MU. The singleturn iC-MU (1) can be configured to interpret 3, 4, 5, or 6 bits of the read multiturn data as singleturn data (ST) (see Table 62). The output through the incremental interface, the UVW interface and the serial interface in MODE_ST = 0x1 (FlexCount) of iC-MU (1) is then absolute with this additional information.

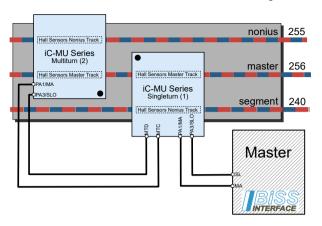


Figure 42: 3-track nonius with 2 iC-MU

The construction of such a system is shown as an example in Figure 42 and the configuration in Table 68.

Table 69 shows the possible settings for a 3-track nonius systems with 2 iC-MU and the resulting periods/revolution of the tracks. The maximum phase deviation of the tracks is summarized in Table 70.

Master Periods	128	256	512	1024		
iC-MU (1): s	iC-MU (1): singleturn					
Parameter	Value	Value	Value	Value		
MPC	0x04	0x04	0x05	0x05		
MODE_MT	0x03	0x04	0x04	0x05		
SBL_MT	0x03	0x03	0x03	0x03		
ROT_MT	0x01	0x01	0x01	0x01		
NCHK_NON	0x00	0x00	0x00	0x00		
CHK_MT	0x01	0x01	0x01	0x01		
ESSI_MT	0x01	0x01	0x01	0x01		
LIN	0x01	0x01	0x01	0x01		
OUT_LSB	0x00	0x00	0x00	0x00		
OUT_MSB	0x07	0x08	0x09	0x0A		
iC-MU (2): n	nultiturn					
Parameter	Value	Value	Value	Value		
MPC	0x07	0x08	0x09	0x0A		
MODE_MT	0x00	0x00	0x00	0x00		
MODE_ST	0x00	0x00	0x00	0x00		
ROT	0x00	0x00	0x00	0x00		
NCHK_NON	0x01	0x01	0x01	0x01		
GSSI	0x00	0x00	0x00	0x00		
MODEA	0x05	0x05	0x05	0x05		
LIN	0x01	0x01	0x01	0x01		
OUT_LSB	0x0E	0x0E	0x0F	0x0F		

Table 68: Configuration example for the 3-track nonius systems of 128, 256, 512 and 1024 master periods

0x09

0x0A

80x0

0x07

OUT MSB

MPC	C Periods/		Periods/revolution		ST Periods [Bit]
(2)	(1)	Master	Segm.	Nonius	from MT(2)	from ST(1)
0x7	0x4	128	120	127	3	4
0x8	0x4	256	240	255	4	4
0x9	0x5	512	496	511	4	5
0xA	0x5	1024	992	1023	5	5
0xB	0x6	2048	2016	2047	5	6
0xC	0x6	4096	4032	4095	6	6

Table 69: Settings for a 3-track nonius system using 2 iC-MU

		Permissible Max. phase deviation			
Periods/revolution		[given in degree per signal period of 360°]			
Master	Segm.	Nonius	Master ↔ Segm.	Master ↔ Non.*)	
			(1)	(2)	
128	120	127	+/-9.84°	+/-19.68°	
256	240	255	+/-9.84°	+/-9.84°	
512	496	511	+/-4.92°	+/-9.84°	
1024	992	1023	+/-4.92°	+/-4.92°	
2048	2016	2047	+/-2.46°	+/-4.92°	
4096	4032	4095	+/-2.46°	+/-2.46°	
Note	*) with SBL_MT=0x3				

Table 70: Tolerable phase deviation for the master versus the nonius or segment track of a 3-track nonius system (with reference to 360°, electrical)

Figure 43 shows the principle of the synchronisation of the data from iC-MU (2) to iC-MU (1).

Rev E3, Page 46/68

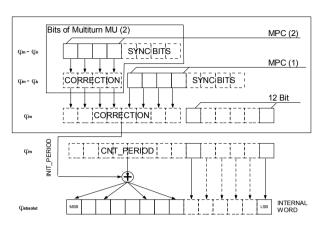


Figure 43: Principle of the synchronisation of a 3-track nonius system using 2 iC-MU without further multiturn data

To facilitate the initial configuration of an iC-MU as a SSI multiturn device the command SWITCH can be used (see page 59). The singleturn iC-MU (1) in Figure 42 has to enable the direct communication to the multiturn sensor by setting GET_MT to 1. The configuration of iC-MU (2) can take place using the BiSS protocol. After the configuration of the external multiturn MODEA_NEW and RPL_NEW are used to set the target configuration of MODEA and RPL. After that the command SWITCH is executed. By reading STATUS1 it is possible to control if there was an error while executing the command. After the next startup or after the execution of the command SOFT_RESET iC-MU starts with the interface configurated with MODEA_NEW and RPL NEW.

MT Interface Daisy Chain

The MT interface daisy chain mode gives direct access to an external multiturn sensor for calibration purposes.

MODEA		
Code	Function	
0x2	BiSS	
0x5	SSI+ERRL	
0x6	SSI+ERRH	
0x7	ExtSSI	

Table 71: MT Interface Daisy Chain: Possible MODEA configuration

Making use of the BiSS Interface bus capabilities, iC-MU can connect the external multiturn sensor to the BiSS master controller in modes MODEA = 0x02 (BiSS) and MODEA = 0x05-0x07 (SSI with Error bit and ExtSSI; additional condition RSSI = 1) when GET_MT is enabled.

To this end input pin MA (PA1) receiving the BiSS master's clock signal is fed through to output pin MTC and the input pin MTD is activated in place of the input pin SLI (PA2). Upon enabling this mode the single cycle timeout (see Fig. 3) must have elapsed and an additional init command must be carried out by the BiSS master, before it can run the first register communication.

Note:

Additional condition RSSI = 1 when using GET_MT and MODEA = 0x05, 0x06 or 0x07.

Hint:

First set GET_MT then RSSI to activate direct communication to Multiturn Sensor in SSI modes.

Example: external multiturn sensor built with iC-MU is connected to the MT interface of a first iC-MU, preparing the singleturn data. With GET_MT enabled, the external multiturn can then be addressed via BiSS ID 0 and the singleturn via BiSS ID 1. This temporal chain operation simplifies device parametrization during encoder manufacturing.

GET_MT	Addr. 0x10; bit 7
Code	Function
0	Disabled
1	MT interface daisy chain

Table 72: Direct BiSS communication enable for MT sensor via I/O Interface

Rev E3, Page 47/68

INCREMENTAL OUTPUT ABZ, STEP/DIRECTION AND CW/CCW

MODEA	
Code	Description
0x3	ABZ
MODEB	
Code	Description
0x0	ABZ
0x2	Step/Direction
0x3	CW/CCW Incremental
Notes:	It is not possible to select an incremental interface on MODEA and MODEB simultaneously

Table 73: MODEA/MODEB: ABZ, step/direction and CW/CCW

The resolution of incremental signals ABZ can be programmed for each singleturn cycle within a range of 4 to 262,144 edges using the internal FlexCount®. The number of master periods which is equivalent to a singleturn cycle is defined by the settings in register MPC (Table 54).

RESABZ(7:	0) Addr. 0x13;	bit 7:	0
RESABZ(15	5:0) Addr. 0x14;	bit 7:	0
Code	Resolution		Interpolation factor
0x0000	4		1
0x0001	8		2
0xFFFF	262,144		65,536
Notes:	For non-binary resolutions above 32,768 (0x2000) the relative error increases		

Table 74: FlexCount®- Resolution

In linear application the min. increment of the incremental output (FlexCount) can be calculated as follows:

$$\frac{\mathit{MPC}*\mathit{magnetic period}}{\mathit{max. resolution FlexCount}}$$
 = min. increment linear

Example with MPC = 0x5 (master period count 32):

$$\frac{32 * 2.56mm}{262144} = 312.5nm$$

Note:

In linear applications the min. increment of 156nm can be read via the serial interfaces for MODE_ST = 0x0 (output absolute position) independent of the selected MPC.

Figure 44 shows the ABZ, step/direction, and CW/CCW signals. The length of a signal A or B cycle is defined

by $\phi_{360\text{AB}}$ as a range between two rising edges of an A or B signal.

 ϕ_{hys} represents the hysteresis which must be exceeded before further edges are generated at the incremental interface.

Minimum edge distance $t_{\rm mtd}$ is the minimum time which must have elapsed before another event can be output at the incremental interface.

The length of the Z pulse with setting ZLEN = 0x00 is defined by φ_{z90} .

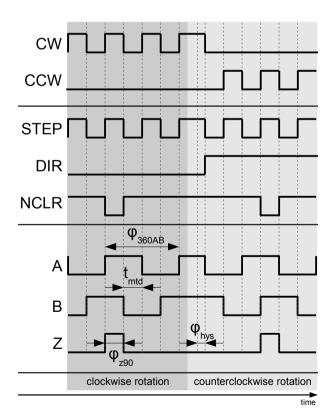


Figure 44: Definition of the ABZ, STEP/DIR, and CW/CCW signals

The phase position of the incremental output signals can be inverted using the relevant configuration bit INV x (x = A,B,Z).

Rev E3, Page 48/68

INV_A	Addr. 0x16; bit 2
Code	A/STEP/CW-Signal
0	normal
1	inversion

Table 75: Inversion A-Signal

INV_B	Addr. 0x16; bit 1
Code	B/DIR/CCW-Signal
0	normal
1	inversion

Table 76: Inversion B-Signal

INV_Z	Addr. 0x16; bit 0
Code	Z/NCLR-Signal
0	normal
1	inversion

Table 77: Inversion Z-Signal

Index pulse Z can be programmed in four lengths. The position of the index pulse in relation to the A/B signals is shown in Figure 45.

LENZ(1:0)	Addr. 0x16; bit 7:6
Code	Z-pulse length
0x0	90°
0x1	180°
0x2	270°
0x3	360°

Table 78: Index pulse length

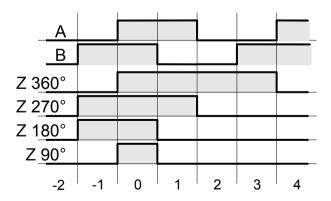


Figure 45: Index pulse length settings

The direction of rotation can be inverted with parameter ROT. The parameter affects the output of the data word through the serial interface in MODE_ST=0x0 and 0x1, the ABZ-interface and the UVW-interface.

ROT	Addr. 0x15; bit 7
Code	Description
0	no inversion of code direction
1	inversion of code direction

Table 79: Inverted direction of rotation

Parameter SS_AB must be configured depending on the maximum speed. With a filter setting of FILT = 0x00 (Table 53), correspondingly higher SS_AB step size values must be programmed. The maximum possible resolution of the incremental count signal is limited by the selected step size.

SS_AB(1:0) Addr.		. 0x15; bit 5:	4		
Code	max	FILT	max. rotation speed *)		
	res.		MPC = 0x4 (16/15)	MPC = 0x5 (32/31)	MPC = 0x6 (64/63)
0x0	2 ¹⁸	0x0	don't use	don't use	1500 rpm
		≥ 0x1	6000 rpm	6000 rpm	6000 rpm
0x1	2 ¹⁷	0x0	don't use	3000 rpm	3000 rpm
		≥ 0x1	12000 rpm	12000 rpm	6000 rpm
0x2	2 ¹⁶	0x0	6000 rpm	6000 rpm	6000 rpm
		≥ 0x1	24000 rpm	12000 rpm	6000 rpm
0x3	2 ¹⁵	0x0	12000 rpm	12000 rpm	6000 rpm
		≥ 0x1	24000 rpm	12000 rpm	6000 rpm
Note:	*) FRQAB = 0x0				

Table 80: System AB step size and limitation of rotation frequency

The minimum edge distance $t_{\rm mtd}$ of the ABZ, STEP/DIR or CW/CCW interface can be limited by setting the maximum output frequency with FRQAB. It can be used to adjust the output frequency to a frequency limit given by an external ABZ, STEP/DIR or CW/CCW counter device. The FRQ_ABZ status bit is set in the case of an unacceptable high speed.

FRQAB(2:0) Addr. 0x15; bit 2:0				
Code	Output frequency AB	Edge distance t _{mtd}		
0x0	6.25 MHz	40 ns		
0x1	3.13 MHz	80 ns		
0x2	1.56 MHz	160 ns		
0x3	781.25 kHz	320 ns		
0x4	390.63 kHz	640 ns		
0x5	195.31 kHz	1.28 µs		
0x6	48.83 kHz	5.12 µs		
0x7	12.2 kHz	20.48 µs		

Table 81: AB output frequency

The incremental counter has an integrated hysteresis which prevents multiple switching of the incremental signals at the reversing point. Hysteresis ϕ_{hys} must first be exceeded before edges can again be generated at

Rev E3, Page 49/68

A or B. This hysteresis can be set within a range of 0° to 0.35° according to Table 82 and is referenced to 360° of a singleturn cycle.

CHYS_AB(1:0) Addr. 0x16; bit 5:4			
Code	Hysteresis	parameter SS_AB	
0x0	0.0014°	0x0	
0x0	0.0041°	0x1	
0x0	0.0096°	0x2	
0x0	0.021°	0x3	
0x1	0.175°	d.c.	
0x2	0.35°	d.c.	
0x3	0.7°	d.c.	
Notes:	d.c.: don't care		

Table 82: Hysteresis with an inverted direction of rotation

The parameter ENIF_AUTO selects whether at startup the incremental interface is enabled after the converter has found its operating point or if the counting to the absolute angle can be seen at the incremental interface.

ENIF_AUTO	Addr. 0x15; bit 4	
Code	Description	
0	counting to operating point visible	
1	counting to operating point not visible	

Table 83: Incremental interface enable

See the chapter on the preset function (p. 63) to set the offset for ABZ output.

Rev E3, Page 50/68

UVW COMMUTATION SIGNALS

MODEB	
Code	Description
0x1	UVW

Table 84: MODEB: UVW

iC-MU can generate commutation signals for BLDC motors from 1 up to 16 pole pairs. The hysteresis is set fixed to 0.0879° referenced to a mechanical revolution.

Figure 46 shows the commutation sequence for a motor with 6 pole pairs. Here, a commutation sequence spanning an angle of $\phi_{360\text{UVW}}$ repeats itself 6 times within one mechanical revolution of the motor. The phase shift between the commutation signals is 120°.

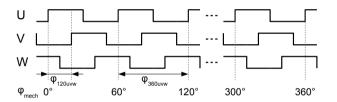


Figure 46: commutation signals UVW

Using parameter PPUVW the number of commutation sequences per mechanical revolution can be set.

PPUVW(5:0	PPUVW(5:0) Addr. 0x17; bit 5:0				
Code	number of pole pairs	Code	number of pole pairs		
0x02	1 pole pair	0x1A	9 pole pairs		
0x05	2 pole pairs	0x1D	10 pole pairs		
0x08	3 pole pairs	0x20	11 pole pairs		
0x0B	4 pole pairs	0x23	12 pole pairs		
0x0E	5 pole pairs	0x26	13 pole pairs		
0x11	6 pole pairs	0x29	14 pole pairs		
0x14	7 pole pairs	0x2C	15 pole pairs		
0x17	8 pole pairs	0x2F	16 pole pairs		

Table 85: Number of commutation signal pole pairs

The sequence of the commutation signals can be selected by $\phi_{120\text{UVW}}$ as in Figure 46 or with a distance of 60° between two neighboring rising edges referenced to one UVW cycle using parameter PP60UVW.

PP60UVW	Addr. 0x16; bit 3
Code	Phase UVW signals
0	120° phase shift
1	60° phase shift

Table 86: Commutation signal phase length

Register OFF_UVW is used to set the start angle and compensate for the offset between the winding of the BLDC and the Hall sensor signals. This angle can be set with 12 bits.

Note:

After startup or the commands SOFT_RESET and ABS_RESET the OFF_UVW values are amended to include the nonius data, with a configured multiturn updated with the multiturn data, and stored as OFF COM in the internal RAM.

OFF_UVW(3:0) Addr. 0x28; bit 7:4
OFF_UVW(11:4) Addr. 0x29; bit 7:0
OFF_UVW(3:0) Addr. SER:0x4B; bit 7:4
OFF_UVW(11:4) Addr. SER:0x4C; bit 7:0
Code	Offset UVW signals
0x000	0.00° mech
0x001	0.09° mech
	360.0° mech 4096 · OFF_UVW
0xFFF	359.9° mech

Table 87: Commutation signal start angle

OFF_COM(:0) Addr. SER:0)	23; bit 7:4	R
OFF_COM(1:4) Addr. SER:0x	24; bit 7:0	R
Code	Description		
0x000			
	start angle commuta computed)	ation signal (automatically	
0xFFF			

Table 88: Commutation signal start angle amended by the nonius/MT

The direction of rotation can be inverted with parameter ROT. The parameter affects the output of the data word through the serial interface in MODE_ST=0x0 and 0x1, the ABZ-interface and the UVW-interface.

ROT	Addr. 0x15; bit 7
Code	Description
0	no inversion of direction of rotation
1	inversion of rotation

Table 89: Inverted direction of rotation

Rev E3, Page 51/68

REGISTER ACCESS THROUGH SERIAL INTERFACE (SPI AND BISS)

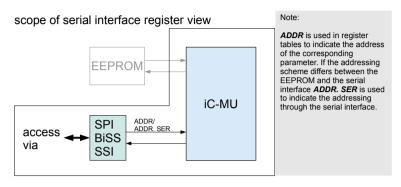


Figure 47: Scope of register mapping serial interface

The distribution of addresses in iC-MU corresponds to the document BiSS C Protocol Description which can be downloaded at www.biss-interface.com.

iC-MU supports an addressing scheme using banks. Therefore the internal address space is divided into banks of 64 bytes each. The address sections visible via the I/O interface recognizes a "dynamic" section (addresses 0x00 to 0x3F) and a "static" section which is permanently visible (addresses 0x40 to 0x7F). The static address section is always visible independent of the bank currently selected. Figure 48 illustrates how the banks selected by BANKSEL are addressed.

BANKSEL(4	4:0) Addr. SER:0x40; bit 4:0			
Code	Description			
0x0				
	Selection of the memory bank			
0x1F				

Table 90: Register to select a memory bank

The abbreviation *Addr. SER* used in the register tables of the specification of the iC-MU stands for the addressing of this register through the serial interface.

The address translation for the addressable memory areas via the bank register to the EEPROM addresses is shown in Table 91. Figure 49 shows a schematical overview of the register/memory mapping.

Code	Bank	Memory location during operation	Mode
CONF	0	internal register	iC-MU configuration data
EDS	1	E2P: 0x040-0x07F	Electronic-Data- Sheet
	4	E2P: 0x100-0x13F	
USER	5	E2P: 0x140-0x17F	OEM data, free user area
	31	E2P: 0x7C0-0x7FF	

Table 91: Address translation Addr Ser: 0x00-0x3F

After startup the BANKSEL register is set to 0. **Note:** Burst mode is not supported by iC-MU for write access to the registers. Data has to be written byte-by-byte.

CONF:	CONF: Bank 0, Addresses 0x00-0x3F							
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	GC_N	V(1:0)			GF_N	M(5:0)		
0x01			GX_M(6:0)					
0x02		VOSS_M(6:0)						
0x03		VOSC_M(6:0)						
0x04			PH_M(6:0)					
0x05	ENAC		CIBM(3:0)					
0x06	GC_I	(1:0) GF_N(5:0)						
0x07		GX_N(6:0)						
0x08		VOSS_N(6:0)						

Rev E3, Page 52/68

CONF:	Bank 0, Add	dresses 0x00)-0x3F					
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x09			'	,	VOSC_N(6:0)	1	
0x0A					PH_N(6:0)			
0x0B			MODEB(2:0)			MODEA(2:0))
0x0C				CFGE	W(7:0)			
0x0D	ACC_STAT	NCHK_CRC	NCHK_NON	ACRM_RES			EMTD(2:0)	
0x0E	ESSI_	MT(1:0)	ROT_MT	LIN			FILT(2:0)	
0x0F		SPO_I	MT(3:0)			MPC	2(3:0)	
0x10	GET_MT	CHK_MT	SBL_N	ИТ(1:0)		MODE_	MT(3:0)	
0x11	C	OUT_ZERO(2			C	OUT_MSB(4:		
0x12	GSSI	RSSI	MODE_	_ST(1:0)		OUT_L	.SB(3:0)	
0x13	RESABZ(7:0)							
0x14	RESABZ(15:8)							
0x15	ROT			B(1:0)	ENIF_AUTO		FRQAB(2:0)	
0x16	LEN	Z(1:0)	CHYS_	_AB(1:0)	PP60UVW	INV_A	INV_B	INV_Z
0x17	RPL(1:0) PPUVW(5:0)							
0x18				TES	Γ(7:0)			
0x19								
				RESE	RVED			
0x1D								
0x1E		OFF_A	BZ(3:0)			RESE	RVED	
0x1F					BZ(11:4)			
0x20					S*(19:12)			
0x21					S*(27:20)			
0x22				OFF_PO	S*(35:28)			
0x23		OFF_C	OM**(3:0)			RESE	RVED	
0x24					M**(11:4)			
0x25				PA0_C0	ONF(7:0)			
0x26								
				RESE	RVED			
0x2A								
0x2B		RESERVED	<u> </u>	ACGAIN	N_M(1:0)	A	FGAIN_M(2:	0)
0x2C								
				RESE	RVED			
0x2E								
0x2F		RESERVED		ACGAI	N_N(1:0)	Α	FGAIN_N(2:	U)
0x30				5-6-	·D\ /ED			
	RESERVED							
0x3F	+ OFF AS	7 1	1-14-1 1 1	1 1	Character Co.	C		
Note:	_	z value amen				tion		
	^^ OFF_UV	W value ame	naed to inclu	iae nonius inf	rormation			

Table 92: Register mapping bank 0, addresses 0x00-0x3F (access via serial interface)

OFF_POS* are the offset values (OFF_ABZ) automatically changed by the period information of the initial nonius calculation and if configured by the external multiturn data. OFF_POS can thus be seen as a start value for the internally counted ST period and MT data.

Rev E3, Page 53/68

۸ ۵۵۰	D:+ 7	Dit 6	Dit E	Dit 4	Dit 3	Dit 0	D:+ 4	D:+ 0
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
)x40					E	BANKSEL(4:	0)	
x41		EDSBANK(7:0)						
0x42				PROFIL	.E_ID(7:0)			
)x43				PROFILI	E_ID(15:8)			
0x44				SERI	AL(7:0)			
0x45				SERIA	AL(15:8)			
0x46				SERIA	L(23:16)			
0x47				SERIA	L(31:24)			
)x48				OFF_AI	BZ(19:12)			
0x49				OFF_AI	BZ(27:20)			
0x4A				OFF_AI	BZ(35:28)			
0x4B		OFF_U	JVW(3:0)			RES	ERVED	
0x4C				OFF_U	VW(11:4)			
0x4D		PRES_	POS(3:0)			RESE	ERVED	
0x4E				_	POS(11:4)			
0x4F				_	OS(19:12)			
0x50					OS(27:20)			
0x51				PRES_P	OS(35:28)			
0x52	SPO_0(3:0)							
0x53		SPO	_2(3:0)		SPO_1(3:0)			
0x54		SPO	_4(3:0)		SPO_3(3:0)			
0x55		SPO	_6(3:0)		SPO_5(3:0)			
0x56		SPO	_8(3:0)		SPO_7(3:0)			
0x57			_10(3:0)		SPO_9(3:0)			
0x58			_12(3:0)			SPO_11(3:0)		
0x59		SPO ₋	_14(3:0)			SPO_	_13(3:0)	
0x5A					ESET(7:0)			
0x5B					START(7:0)			
0x5C					START(7:0)			
0x5D					1_END(7:0)			
0x5E					EVID(7:0)			
0x5F				I2C_RE	TRY(7:0)			
0x60								
			US	EK_EXCHAN	IGE_REGIST	ERS		
0x6F								
0x70				5-0-	-D\			
0x71				RESI	ERVED			
0x72								
0x73					COUNT(7:0)			
)x74					REV(7:0)			
0x75					MU(7:0)			
0x76					JS0(7:0)			
0x77					JS1(7:0)			
0x78					ID(7:0)			
0x79					ID(15:8)			
0x7A		DEV_ID(23:16) DEV_ID(31:24)						

Rev E3, Page 54/68

Static p	Static part: Addresses 0x40-0xBF							
Addr. SER	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x7C				DEV_ID	0(39:32)			
0x7D				DEV_ID	0(47:40)			
0x7E	MFG_ID(7:0)							
0x7F	MFG_ID(15:8)							
0x80*)	CRC16(7:0)							
0x81*)	CRC16(15:8)							
0x82*)				CRC	3(7:0)			
0x83*))x83*)							
	RESERVED							
0xBF*)	0xBF*)							
*) Acces	s on address	s space SER	> 0x7F only	via SPI interf	ace possible			

Table 93: Register mapping bank 0-31, addresses 0x40-0xBF (access via serial interface)

The current iC-MU Series chip type and hardware revision can be read out through HARD_REV. The upper nibble indicates the chip type (iC-MU = 0b0000, iC-MU150 = 0b0001, iC-MU200 = 0b0010), and the lower nibble indicates the hardware revision.

HARD_REV	(7:0) Addr. SER: 0x74; bit 7:0
Code	Chip Type and Revision
0x02	iC-MU 0
0x03	iC-MU 1
0x04	iC-MU Z
0x05	iC-MU Y
0x06	iC-MU Y1
0x07	iC-MU Y2/Y2H
0x10	iC-MU150 0
0x11	iC-MU150 1
0x20	iC-MU200 0

Table 94: HARD_REV

Rev E3, Page 55/68

Address sections/Register protection level

Register access can be restricted via RPL (see Table 95). RPL = 0x2/0x3 selects a shipping mode with limited access which can be set back to RPL = 0x0. To set back RPL the content of Bank: 0, Addr. SER: 0x17 has to be written to RPL_RESET.

RPL(1:0)	Addr. 0x17; bit 7:6					
Code	Mode	Access restriction				
0x0	Configuration mode, no restrictions	RP0				
0x1	Shipping mode, without command I2C_COM, reset is not possible	RP1				
0x2	Shipping mode, with command I2C_COM, reset to RP0 possible	RP1				
0x3	Shipping mode, without command I2C_COM, reset to RP0 possible	RP1				

Table 95: Register access control

RPL_RESET(7:0) Addr. SER:0x5A; bit 7:0			
Code	Description			
0x00				
	Set back value for RPL			
0xFF				

Table 96: Set back value for RPL

Sections CONF, EDS and USER are protected at different levels in shipping mode for read and write access (see Figure 48).

RPL(1:0)	Addr. 0x17; bit 7:6				
	Section				
RPL*	CONF	EDS	USER		
RP0	r/w	r/w	r/w		
RP1	n/a	r	r/w		
Note	*) RPL: Register Protection Level				
	n/a: iC-MU denies access to those register addresses				
	r: Registers are readable				
	w: Registers ar	e writeable			

Table 97: Register Read/Write Protection Levels

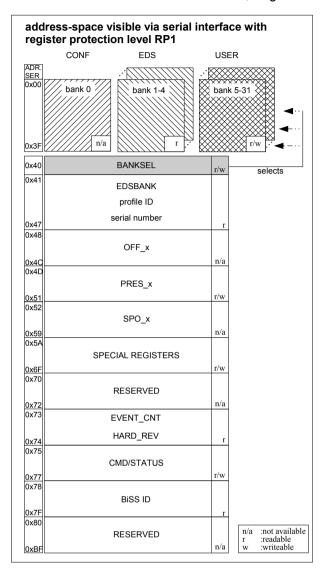


Figure 48: Principle of bank-wise memory addressing and access restrictions with register protection level RP1

Rev E3, Page 56/68

Overview Register access: memory mapping, Register protection levels

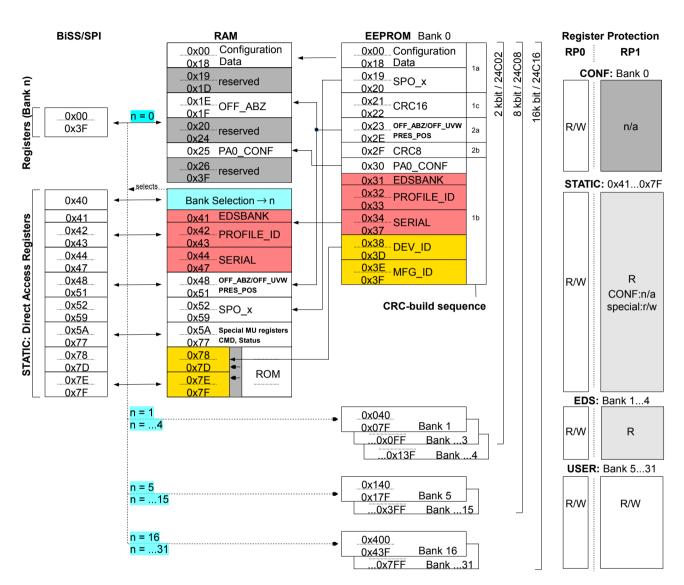


Figure 49: Register access with memory mapping

Rev E3, Page 57/68

STATUS REGISTER AND ERROR MONITORING

Status register

Various Status-information can be read out via status bytes STATUS0 and STATUS1.

STAT	US0(7:0)	Addr. SER: 0x76; bit 7:0	R	
Bit	Name	Description of status message		
4	STUP	Startup iC-MU		
3	AN_MAX	Signal error*: clipping (nonius track)		
2	AN_MIN	Signal error*: poor level (nonius track)		
1	AM_MAX	Signal error*: clipping (master track)		
0	AM_MIN	Signal error*: poor level (master track)		
	Notes	Error indication logic: 1 = true, 0 = false, * for signal thresholds see elec. char. no. see and 509	508	

Table 98: Status register 0

Status bit **STUP** indicates that one or multiple of the following conditions apply during the startup routine:

- An I2C communication or CRC error occured (ABZ/UVW engine is stopped, reset with ABS_RESET)
- The amplitude of the master track is too low and ACRM_RES = 1 (ABZ/UVW engine is stopped, reset when the master track amplitude is sufficient again) This also applies during normal operation.
- The multiturn interface is active and communication fails or the SSI error bit is active

STAT	US1(7:0)	Addr. SER: 0x77; bit 7:0	
Bit	Name	Description of status message	
7	CRC_ERR	Invalid check sum internal RAM	
6	EPR_ERR	I2C communication error: - No EEPROM - I2C communication error	
5	MT_ERR	Multiturn communication error: - MTD line not 1 when trying to read MT data - MTD line is not 0 right after the last clock pulse - SSI error bit active on MT interface*	
4	MT_CTR	Multiturn data consistency error: counted multiturn ↔ external MT data	
3	NON_CTR	Period counter consistency error: counted period \leftrightarrow calculated Nonius position	
2	FRQ_ABZ	Excessive signal frequency for ABZ-converter	
1	FRQ_CNV	Excessive signal frequency for internal 12 Bit converter	
0	CMD_EXE	Command execution in progress	
	Notes	Error indication logic: 1=true, 0=false * ESSI_MT = 0x1 or 0x3	

Table 99: Status register 1

ACC_STAT configures, if the status registers show the actual or the accumulated status information.

If the accumulated status is configured, the status bits are maintained until the status register is read out or the command ABS_RESET or SOFT_RESET are executed. This is valid except for EPR_ERR, STUP and CMD_EXE. These bits are set in the status register independent of the ACC_STAT configuration while the status information is active. The status register can be accessed independently of the internal operating state.

ACC_STAT	Addr. 0x0D; bit 7
Code	Description
0	Output of actual status information
1	Output of accumulated status information

Table 100: Output configuration of status register

Note:

A read access to the reserved addresses SER: 0x3D and 0x3E also clears the accumulated status information STATUS0 and STATUS1 if ACC_STAT is set to 1.

Error and warning bit configuration

The output and the polarity of the error and warning bit within the different serial protocols (MODEA Table 34) can be found in Table 101. Messages are allocated to the error and warning bit by parameter CFGEW according to Table 102.

MODEA(2:0	MODEA(2:0) Addr. 0x0B; bit 2:0					
Function	Error		Warning			
	low active high active		low active	high active		
SPI	-	-	-	-		
BiSS	x	-	х	-		
SSI	-	-	-	-		
SSI+ERRL	x	-	-	-		
SSI+ERRH	-	x	-	-		
ExtSSI	х	-	x	-		

Table 101: MODEA: error/warning-bit within serial protocols

Rev E3, Page 58/68

CFGEW(7:0) Addr. 0x0C; bit 7:0		
Bit	Visibility for error bit		
7	MT_ERR/MT_CTR		
6	NON_CTR		
5	Ax_MAX and Ax_MIN		
4	EPR_ERR		
3	CRC_ERR		
2	CMD_EXE		
Bit	Visibility for warning bit		
1	FRQ_CNV/FRQ_ABZ		
0	Ax_MAX and Ax_MIN		
Notes	x = M, N		
	Encoding: 0 = message enabled, 1 = message disabled		

Table 102: Error and warning bit configuration

If an error pin is configured using MODEB (Table 35), an internal error (see status register, ACC_STAT configuration and error bit configuration with CFGEW) is signaled by the NER pin (PB3). In that case pin PB3 is a open-collector output. The minimum message time for I/O pin NER can be set by EMTD.

EMTD(2:0)	Addr. 0x0D		
Code	min. disp. time	Code	min. disp. time
0x0	0 ms	0x4	50 ms
0x1	12.5 ms	0x5	62.5 ms
0x2	25 ms	0x6	75 ms
0x3	37.5 ms	0x7	87.5 ms

Table 103: Minimum error display time

Rev E3, Page 59/68

COMMAND REGISTER

Description of implemented commands

An implemented command is executed depending on the written data value.

CMD_MU(7:0)	Addr. SER: 0x75; bi	it 7:0
Code	Command	Explanation
0x00	reserved	no function
0x01	WRITE_ALL	Write internal configuration and Offset values to EEPROM
0x02	WRITE_OFF	Write internal Offset values to EEPROM
0x03	ABS_RESET	Reset of Absolute value (including ABZ-part), takes typ. 10 ms
0x04	NON_VER	Verification of actual position by doing a nonius calculation
0x05	MT_RESET	New read in and synchronisation of multiturn value
0x06	MT_VER	Read in of multiturn and verification of counted multiturn value
0x07	SOFT_RESET	startup with read in of EEPROM
0x08	SOFT_PRES	Set output to preset
0x09	SOFT_E2P_PRES	Set output to preset and save offset values to EEPROM
0x0A	I2C_COM	start I2C communication
0x0B	EVENT_COUNT	increment event counter by 1
0x0C	SWITCH	Writes all configurations parameters without offsets to EEPROM. MODEA/RPL will be exchanged with MODEA_NEW/RPL_NEW during write operation
0x0D	CRC_VER	Verification of CRC16 and CRC8
0x0E	CRC_CALC	Recalculate internal CRC16 and CRC8 values
0x0F	SET_MTC	Set MTC-Pin *)
0x10	RES_MTC	Reset MTC-Pin *)
0x11	reserved	no function
0xFF		
Note:	*) MODE_MT=0x00	

Table 104: Implemented commands

WRITE_ALL stores the internal configuration and offset/preset values to the EEPROM. CRC16 and CRC8 are automatically updated.

WRITE_OFF only stores the offset/preset data area to the EEPROM. CRC8 is automatically updated.

Command **ABS_RESET** initiates a redefinition of the absolute value. A new nonius calculation is started. If a multiturn is configured, this is read in and synchronized. Offset values OFF_ABZ/OFF_UVW are amended to include the ST period and MT information and are stored as OFF_POS and OFF_COM. The ABZ/UVW converter is restarted.

Command **NON_VER** initiates a nonius calculation and the computed value is compared to the current counted period. If there is a discrepancy, error bit NON_CTR is set in status register STATUS1.

With command MT_RESET an external multiturn is read in anew and synchronized. Offset values OFF ABZ and OFF UVW are changed to include the

newly read-in multiturn data and stored as OFF_POS and OFF_COM.

Attention:

The ABZ/UVW converter is not restarted automatically with the command **MT_RESET**. If part of the multiturn data is used for the singleturn information, ABS_RESET has to be executed additionally.

With command **MT_VER** an external multiturn is read in and the counted multiturn value is verified. If there is a discrepancy, error bit MT_CTR is set in status register STATUS1.

With command **SOFT_RESET** internal finite state machines and counters are reset. The EEPROM is read in anew. A redefinition of the absolute value is initiated (see **ABS_RESET**)

Command **SOFT_PRES** initiates a preset sequence (cf. page 63) with preset values PRES_POS. The internal offset values OFF ABZ are changed to set the output

Rev E3, Page 60/68

value to the value given by PRES_POS. The internal CRC8 is automatically updated.

Command **SOFT_E2P_PRES** initiates a preset sequence (cf. page 63) with preset values PRES_POS. The altered offset values OFF_ABZ are stored in the EEPROM. CRC8 is automatically updated.

Command I2C_COM initiates communication with a I2C device (RPL=0x00 and 0x02). Prior to this the following parameters must be configured:

- I2C_DEVID
- I2C_RAM_START
- I2C_RAM_END
- · I2C DEV START

The device ID is written to I2C_DEVID (see Table 105). If an error occurs while communicating with an external I2C device up to 3 new communication attempts are started by iC-MU.

I2C_RAM_START defines the start address in the internal RAM which in case of a

- write access: marks the begin of the data area that holds the data to be written
- read access: marks the begin of the data area where the data read from the I2C device is written to

According to this I2C_RAM_END defines the end address of the data area in the internal RAM. The number of bytes NUM_BYTES to be read/written is determined as I2C_RAM_END - I2C_RAM_START + 1 (if the I2C_RAM_END and I2C_RAM_START address are identical 1 byte is read/written).

I2C_DEV_START defines the start address of the I2C device from which NUM_BYTES bytes should be read/written.

The USER_EXCHANGE_REGISTERS (see Table 93) can be used for the data-exchange with the I2C device.

I2C_DEVID(7:0) Addr. SER:0x5E; bit 7:0

Code Meaning

0xA0 write EEPROM

0xA1 read EEPROM

0xC0 write iC-PVL (status/commands)

0xC1 read iC-PVL (status/commands)

Note: I2C_DEVID needs to include the I2C read/write bit.

Table 105: Examples of I2C Device IDs

I2C_RAM_ST	ART Addr. SER: 0x5C; bit 7:0
Code	Description
0x00	
	I2C-RAM start address
0xFF	

Table 106: I2C-RAM start address

I2C_RAM_E	ND Addr. SER: 0x5D; bit 7:0
Code	Description
0x00	
	I2C-RAM end address
0xFF	

Table 107: I2C-RAM end address

I2C_DEV_START	Addr. SER: 0x5B; bit 7:0
Code	Description
0x00	
	I2C device start address
0xFF	

Table 108: I2C device start address

With command **EVENT_COUNT** the value of register EVENT_COUNT is incremented by 1.

EVENT_COUNT(7:	o) Addr. SER:0x73; bit 7:0
Code	Description
0x0	
	Event counter
0xFF	

Table 109: Event counter

The command **SWITCH** makes it possible to write configurations of MODEA and RPL into the EEP-ROM which inhibit further register communications (e.g. MODEA=ABZ).

Note: RPL must be set to 0x0 before starting the command.

MODEA_NEW and RPL_NEW are used to set the target configuration of MODEA and RPL (e.g. ABZ, no RPL). On executing the command SWITCH MODEA

Rev E3, Page 61/68

and RPL are set to the target values and the configuration without the offsets is written to the EEPROM. Finally MODEA and RPL are set back to the original values. This makes it possible to control the success of the EEPROM write process by reading STATUS1 (EPR ERR should not be set).

Note: CRC_ERR is set after command execution if there is the cyclic CRC check configured by NCHK_CRC=0 and the target values of MODEA and RPL differ from the originals values.

iC-MU starts with the interface and register protection level configured with MODEA_NEW and RPL_NEW after the next startup or after the execution of command SOFT_RESET.

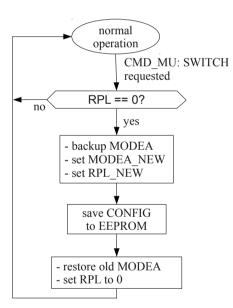


Figure 50: Event sequence of command SWITCH

Note: The SWITCH command should always be executed as the last command after all other configurations have been finished and stored to the EEPROM. Otherwise the values set by RPL_NEW and MODEA_NEW will be overwritten again by the actual RPL and MODEA values, defeating the purpose of the SWITCH command.

If the SWITCH command is used with an empty EEP-ROM, the WRITE_OFF command needs to executed in addition to properly initialize the OFFSET/PRESET area CRC8.

MODEA	MODEA_NEW Addr. SER: 0x60; bit 2:0				
Code	PA0	PA1	PA2	PA3	Function
0x0	NCS	SCLK	MOSI	MISO	SPI _{TRI}
0x1	NCS	SCLK	MOSI	MISO	SPI
0x2	NPRES	MA	SLI	SLO	BiSS
0x3	NPRES	Α	В	Z	ABZ
0x4	NPRES	MA	SLI	SLO	SSI
0x5	NPRES	MA	SLI	SLO	SSI+ERRL
0x6	NPRES	MA	SLI	SLO	SSI+ERRH
0x7	NPRES	MA	SLI	SLO	ExtSSI

Table 110: Target value of MODEA for the command SWITCH

RPL_NEW	Addr. SE	R: 0x60; bit 7:6	
Code	Registerpro- tection	Command I2C_COM	Reset to RP0 possible
0x0	RP0	x	x
0x1	RP1	-	-
0x2	RP1	x	x
0x3	RP1	-	x

Table 111: Target value for RPL for the command SWITCH

Command **CRC_VER** starts a verification of CRC16 and CRC8. In case of an crc error, the CRC_ERR status bit is set.

Command **CRC_CALC** starts a recalculation of CRC16 and CRC8. CRC16 and CRC8 are saved internally in iC-MU and are used for later CRC verifications.

The command **SET_MTC** sets pin MTC to logic level 1. **RES_MTC** resets pin MTC to logic level 0. iC-MU saves the actual logic level of pin MTD to MTD_STATUS before it sets or resets pin MTC. To use these commands MODE_MT has to be set to 0x0, i.e. no external multiturn is configured.

MTD_STATE	US Addr. SER: 0x60; bit 0
Code	Description
0	MTD Pin was 0, before setting/resetting MTC
1	MTD Pin was 1, before setting/resetting MTC

Table 112: Status of pin MTD before command execution SET_MTC and RES_MTC

Configurable NPRES Pin

A configurable NPRES pin can be used at pin PA0 if MODEA is set to 0x2-0x7. This pin can be used to execute a command configured by PA0_CONF on a falling edge of NPRES.

Rev E3, Page 62/68

	7:0) Addr. 0x30; bit 7:0	
PA0_CONF(7	7:0) Addr. SER: 0x25; bit 7:0	Bank 0
Code	Command	
0x00	NO_FUNCTION	
0x01	WRITE_ALL	
0x02	WRITE_OFF	
0x03	ABS_RESET	
0x04	NON_VER	
0x05	MT_RESET	
0x06	MT_VER	
0x07	SOFT_RESET	
0x08	SOFT_PRES	
0x09	SOFT_E2P_PRES	
0x0A	I2C_COM	
0x0B	EVENT_COUNT	
0x0C	SWITCH	
0x0D	CRC_VER	
0x0E	CRC_CALC	
0x0F	SET_MTC	
0x10	RES_MTC	
0xFF	no function	

Table 113: Command to be executed on falling edge of NPRES

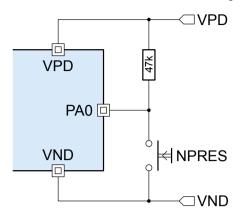


Figure 51: External circuitry for NPRES functionality

Rev E3, Page 63/68

POSITION OFFSET VALUES AND PRESET FUNCTION

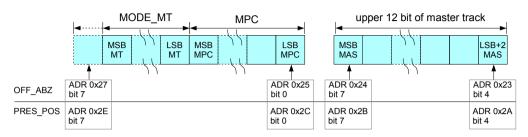


Figure 52: Position of the parameters OFF_ABZ and PRES_POS with respect to configured multiturn (MODE_MT), periods (MPC) and converter resolution

OFF_ABZ holds the position offset values stored in the EEPROM. After startup or the commands SOFT_RESET and ABS_RESET the OFF_ABZ values are amended to include the nonius data and the multiturn data (in case an external multiturn is configured) and stored as OFF_POS in the internal RAM. Value OFF_POS is subtracted with each conversion from the internally synchronized result. OFF_ABZ is not affected by the RESABZ parameter.

OFF_ABZ(3	:0)	Addr.	0x23;	bit	7:4		
OFF_ABZ(1	1:4)	Addr.	0x24;	bit	7:0		
OFF_ABZ(1	9:12)	Addr.	0x25;	bit	7:0		
OFF_ABZ(2	7:20)	Addr.	0x26;	bit	7:0		
OFF_ABZ(3	5:28)	Addr.	0x27;	bit	7:0		
OFF_ABZ(3	:0)	Addr.	SER:0x	1E;	bit 7:	4	Bank0
OFF_ABZ(1	1:4)	Addr.	SER:0x	1F;	bit 7:	0	Bank0
OFF_ABZ(1	9:12)	Addr.	SER:0x	48;	bit 7:	0	
OFF_ABZ(2	7:20)	Addr.	SER:0x	49;	bit 7:	0	
OFF_ABZ(3	5:28)	Addr.	SER:0x	4A;	bit 7	0	
Code	Descri	ption					
0x00000000							
	Offset	positio	n relati	ve t	o abs	olute position	
0xFFFFFFFF							

Table 114: Output offset position, relative to absolute position

OFF_POS(1	9:12)	Addr. SER:0x20;	bit 7:0	Bank0, R
OFF_POS(2	27:20)	Addr. SER:0x21;	bit 7:0	Bank0, R
OFF_POS(3	35:28)	Addr. SER:0x22;	bit 7:0	Bank0, R
Code	Descr	ription		
0x000000000				
	Offset	(is automatically	computed)	
0xFFFFFFFF				

Table 115: Output position offset amended by the non-ius/MT

Preset function

The preset function corrects the output position value of the ABZ, SPI, or BiSS interface to the setpoint given by PRES_POS. Correction is initiated by writing command **SOFT_PRES** or **SOFT_E2P_PRES** to the command register (see page 59), or, if one of these commands is configured with PAO_CONF as NPRES command at PAO pin, by a falling edge at NPRES. See Table 34 for configuration of NPRES and Table 113 for PAO_CONF.

When the preset function is started, the ABZ converter is stopped. The current position is then determined. The correction factor for output (OFF_POS) is calculated taking PRES_POS into account and stored in the internal RAM. Offset values OFF_ABZ are computed and if the command **SOFT_E2P_PRES** is used written to the external EEPROM. The ABZ converter is then restarted.

PRES_POS(3:0) Addr. 0x2A; bit 7:4
PRES_POS(11:	4) Addr. 0x2B; bit 7:0
PRES_POS(19:	12) Addr. 0x2C; bit 7:0
PRES_POS(27:	20) Addr. 0x2D; bit 7:0
PRES_POS(35:	28) Addr. 0x2E; bit 7:0
PRES_POS(3:0) Addr. SER:0x4D; bit 7:4
PRES_POS(11:	4) Addr. SER:0x4E; bit 7:0
PRES_POS(19:	12) Addr. SER:0x4F; bit 7:0
PRES_POS(27:	20) Addr. SER:0x50; bit 7:0
PRES_POS(35:	28) Addr. SER:0x51; bit 7:0
Code [Description
0x000000000	
F	Preset position
0xFFFFFFFF	

Table 116: Output position preset

Rev E3, Page 64/68

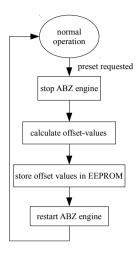


Figure 53: Preset sequence using command SOFT_E2P_PRES

Rev E3, Page 65/68

DESIGN REVIEW: Notes On Chip Functions

iC-MU Y	/2/Y2H	
No.	Function, Parameter/Code	Description and Application Notes
1	3-track Nonius systems with two iC-MU MPC \geq 0x7	The period counter consistency error verification NON_CTR of the multiturn iC-MU (see Figure 42, iC-MU(2)) must be switched off \rightarrow NCHK_NON = 0x1.
2	SPI interface (MODEA = 0x0, 0x1), Read/Write REGISTER(single) with access to EEPROM	SPI command sequence as in Figure 31. The end of a Read/Write REGISTER(single) command to an EEPROM address can be detected by checking the status bit BUSY. Register Status/Data and SPI-STATUS change from 0x02 (Busy) to 0x00. The status bits VALID/FAIL are without functionality. A successful I ² C communication between iC-MU and the EEPROM can be checked via STATUS1 flag EPR_ERR = 0.
3	SSI interface Gray coded MODEA = 0x4; GSSI = 0x1; OUT_ZERO = 0x0	The level of the SSI output pin (signal SLO) can be "1" or "0" during timeout t_{tos} (see Figure 5). Therefore, a SSI timeout may not be detected by a SSI master in all cases. To obtain a reliable SSI timeout set parameter OUT_ZERO = 0x1 (includes a zero bit after position data) and send an additional clock pulse.
4	SSI interface Gray coded with error bit MODEA = 0x5 or 0x6; GSSI = 0x1; OUT_ZERO = 0x0	Conversion of the SSI position data into Gray code requires following procedure: By setting parameter OUT_ZERO = 0x1 (includes a zero bit after position data) and sending an additional clock pulse and subsequently ignoring the additional ZERO bit, the singleturn data is converted correctly into Gray code.
5	Multiturn system - Using iC-MU and iC-PVL with a shared EEPROM	When iC-MU and iC-PVL share an EEPROM for configuration in a multiturn set-up, special care is required to configure iC-MU on the initial startup of the system when iC-PVL also tries to read its configuration from the EEPROM. Once iC-PVL is configured and connected to a backup power source via pin VBAT, it no longer tries to read the EEPROM on consecutive VDD power cycles. This allows the iC-MU to successfully configure itself on every VDD power cycle. For a reliable configuration of iC-MU via the EEPROM on the initial startup of such an iC-MU and iC-PVL based system (install backup power source → power on), it is recommended to either send a SOFT_RES command to iC-MU, or to power cycle the system after the initial startup procedure. This causes the iC-MU to read in the configuration data from the EEPROM again.
6	Port A = BiSS, SSI, SSI+ERRL or SSI+ERRH (MODEA = 0x2, 0x4 to 0x7)	After power-up, the first position readout is shifted by one bit and should be discarded. To avoid this, either a clock pulse must be sent to initialize the serial interface or the potential at pin PA1 must be below 0.4V until the digital power supply VPD has exceeded 2.0V.
7	Restrictions on Nonius phase margin / analog offset	Especially for the low Rth and thus larger QFN48-7x7 package the specific mechanical properties and package stress on board can cause increased analogue offset within the Nonius track (in particular with lower quality targets with 64/63 pole pairs; parameter MPC = 0x6). A significantly reduced Nonius phase margin would be indicated by the iC-MU as a NON_CTR error. A NON_CTR error can cause an incorrect absolute position when the system is restarted. iC-MU fits into the smaller DFN16-5x5 package with its advantages regarding required board space and lower mechanical package stress on board. Especially for the alternative lower Rth QFN48-7x7 packages sufficient Nonius phase margin requires - besides good quality magnetic targets and mechanical adjustment - thorough initial calibration at room temperature or a reduced operating temperature range. Safe operation can be determined e.g. by measuring the Nonius curve over the whole operating temperature range. For further information please request Application Note MU AN16 at support@ichaus.de.

Table 117: Notes on chip functions regarding iC-MU chip release Y2 and Y2H

Rev E3, Page 66/68

REVISION HISTORY

Rel.	Rel. Date ³	Chapter	Modification	Page
B1	2013-04-30		Initial Release	

Rel.	Rel. Date ³	Chapter	Modification	Page
C2	2015-11-02		Please refer to former datasheet release D1	

Rel.	Rel. Date ³	Chapter	Modification	Page
C3	2016-12-21		Please refer to former datasheet release D1	

Rel.	Rel. Date ³	Chapter	Modification	Page
D1	2017-09-18	ELECTRICAL CHARACTERISTICS	Item 407: max. value changed from 30MHz to 32MHz	9
		REGISTER ASSIGNMENTS (EEPROM)	Table 11 revised	19
		ANALOG SIGNAL CONDITIONING FLOW: x = M,N	Added note box with hyperlink to app note AN3	23
		CONFIGURABLE I/O INTERFACE	Formula to calculate data length corrected	30
		STATUS REGISTER AND ERROR MONITORING	Table 98: enhanced notes	57
		DESIGN REVIEW: Notes On Chip Functions	Table 117: added chip revision Y2H	65

Rel.	Rel. Date ³	Chapter	Modification	Page
E1	2018-10-16		Added package QFN48-7x7	5, 7, 8, 68
		PACKAGING INFORMATION	Updated package dimension DFN16-5x5 drawing	6
		OPERATING CONDITIONS: I/O Interface	Item I115 and I119: max. value corrected Item I116: min. value changed from 100 ns to 200 ns, max. value removed Item I117 and I118: min. value changed from 50 ns to 100 ns Item I120: max. value removed	12
		ANALOG SIGNAL CONDITIONING FLOW: x = M,N	Added note: in test mode TEST = 0x1F the I2C communication is disabled	23
		EEPROM AND I2C INTERFACE	Chapter renamed: original name was 'I2C INTERFACE AND STARTUP BEHAVIOR' Description enhanced, added Table 26 and 27 Part 'STARTUP BEHAVIOR' was removed into a new chapter	25
		STARTUP BEHAVIOR	New chapter, the content has been taken from the original chapter 'I2C INTERFACE AND STARTUP BEHAVIOR' without modification	27
		INCREMENTAL OUTPUT ABZ, STEP/DIRECTION AND CW/CCW	Enhanced description re. linear application and min. increment	47
		STATUS REGISTER AND ERROR MONITORING	Description of status flag STUP enhanced Table 99 description of status flag MT_ERR enhanced	57
		COMMAND REGISTER	Description of command SWITCH enhanced	60

Rel.	Rel. Date ³	Chapter	Modification	Page
E2	2019-12-20	OPERATING REQUIREMENTS	SPI Interface: Updated operating conditions SPI interface Updated Figure 2	12
		CONFIGURABLE I/O INTERFACE	Added information on analog mode output voltages to Table 35	29
		CONFIGURABLE I/O INTERFACE	Added information on MISO idle state = high in SPI mode	35
		CONFIGURABLE I/O INTERFACE	Updated Table 52	38
		MT INTERFACE	Updated 3 track system description	45
		INCREMENTAL OUTPUT ABZ, STEP/DIRECTION AND CW/CCW	Description of parameter SS_AB impact improved	48
		COMMAND REGISTER	Improved I2C_COM command description	60
		DESIGN REVIEW: Notes On Chip Functions	Added item 5 for iC-MU Y2/Y2H	65
		DESIGN REVIEW: Notes On Chip Functions	Added item 6 for iC-MU Y2/Y2H	65
		DESIGN REVIEW: Notes On Chip Functions	Removed design review for chip revision Y1 and Z. Please refer to former datasheet release E1.	65

Rev E3, Page 67/68

Rel.	Rel. Date ³	Chapter	Modification	Page
E3	2020-04-08	DESCRIPTION	Removed BiSS-Disclaimer	2
		DESCRIPTION	Added Note on system responsibility	2
		THERMAL DATA	Updated: Rthja according to JESD51	8
		I/O Interface	Corrected pin designation in SPI timing diagram	12
		EEPROM AND I2C INTERFACE	Corrected Table 28 and Table 29 star symbol	25, 26
		REGISTER ACCESS THROUGH SERIAL INTERFACE (SPI AND BISS)	Added note: Burst mode is not supported by iC-MU for write access to the registers.	51
		REGISTER ACCESS THROUGH SERIAL INTERFACE (SPI AND BISS)	Amended HARD_REV table with all iC-MU Series versions	54
		REGISTER ACCESS THROUGH SERIAL INTERFACE (SPI AND BISS)	Chip revision Y2H added to Table 94	54
		COMMAND REGISTER	Added Note on SWITCH command usage with an empty EEPROM	61
		DESIGN REVIEW: Notes On Chip Functions	Added item 7: Restrictions on Nonius phase margin / analog offset	65
		DESIGN REVIEW: Notes On Chip Functions	Minor corrections to the wording	65

iC-Haus expressly reserves the right to change its products and/or specifications. A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

³ Release Date format: YYYY-MM-DD

Rev E3, Page 68/68

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-MU	16-pin DFN 5 x 5 mm	Pin compatible with iC-MU150	iC-MU DFN16-5x5
	48-pin QFN 7 x 7 mm	Pin compatible with iC-MU150 and iC-MU200	iC-MU QFN48-7x7

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

 iC-Haus GmbH
 Tel.: +49 (0) 61 35 - 92 92 - 0

 Am Kuemmerling 18
 Fax: +49 (0) 61 35 - 92 92 - 192

 D-55294 Bodenheim
 Web: http://www.ichaus.com

 GERMANY
 E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners