

www.sii-ic.com 温度开关IC (恒温器IC)

© SII Semiconductor Corporation, 2007-2015

Rev 2.2 o

S-5841系列是以±2.5℃为温度精度进行温度检测的温度开关IC (恒温器IC)。当达到检测温度时输出会反转,温度会降低到解除温度,从而使输出恢复为原始状态。

由于是CMOS构成,因此可从2.2 V的低电源电压开始工作,且消耗电流仅为10 μA (典型值)。

在同一芯片中集成了带有负温度系数的温度传感器、基准电压发生电路、比较器和延迟电路,且将它们收容在SOT-23-5以及SNT-6A封装中。

■ 特点

◆ 检测温度: T_{DET} = +40°C ~ +100°C、进阶单位为+1°C、检测精度 ±2.5°C

● 低电压工作: V_{DD} = 2.2 V (最小值) (检测温度 = +55°C ~ +100°C, Ta = -40°C ~ +100°C)

低消耗电流:
 I_{DD} = 10 μA (典型值) (Ta = +25°C)

● 滞后温度可切换为0°C, 2°C, 4°C和10°C

• 可选择动态 "H" 或动态 "L" 的输出逻辑

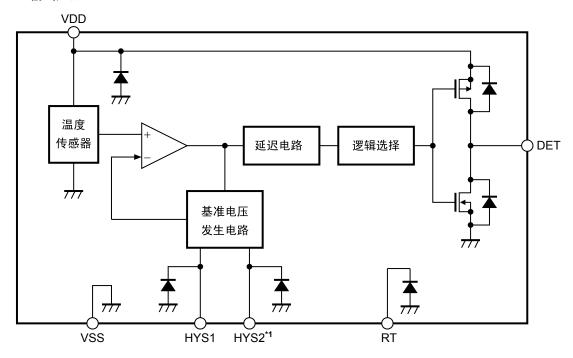
• 可选择CMOS输出或N沟道开路漏极输出的输出方式

• 工作温度范围: Ta = -40°C ~ +125°C

● 无铅、Sn 100%、无卤素^{*1}

*1. 详情请参阅 "■ 产品型号的构成"。

■ 用途


- 风机控制
- 空调系统
- 各种电子设备

■ 封装

- SOT-23-5
- SNT-6A

■ 框图

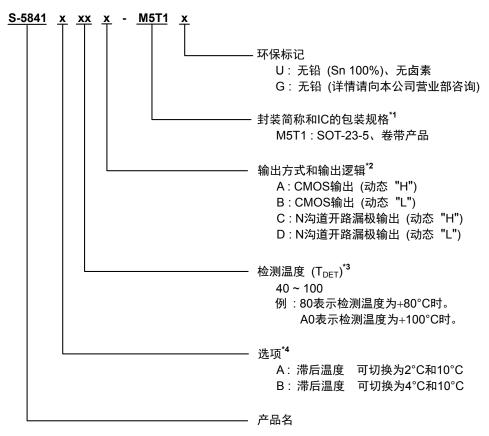
1. CMOS输出产品

*1. SOT-23-5不备有HYS2端子。

图1

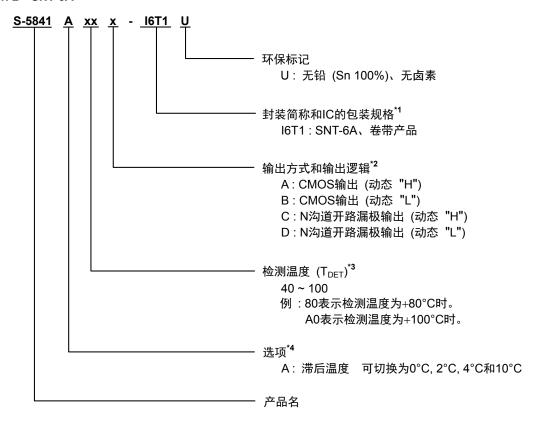
2. N沟道开路漏极输出产品

*1. SOT-23-5不备有HYS2端子。


图2

■ 产品型号的构成

关于S-5841系列产品,可根据用户的用途来选择指定滞后温度选项、检测温度、输出方式和输出逻辑和封装种类。


1. 产品名

1.1 SOT-23-5

- *1. 请参阅卷带图。
- *2. DET端子输出可以选择动态 "H" 或动态 "L" 的输出逻辑。 DET端子输出可以选择CMOS输出或N沟道开路漏极输出的输出方式。
- *3. 检测温度 (T_{DET}) 可在+ 40° C ~ + 100° C的范围内,以 1° C为进阶单位来进行设定。
- *4. 可利用HYS1端子设定滞后温度。根据选项,选择滞后温度可切换为2°C和10°C或可切换为4°C和10°C的产品。

1. 2 SNT-6A

- *1. 请参阅卷带图。
- *2. DET端子输出可以选择动态 "H" 或动态 "L" 的输出逻辑。 DET端子输出可以选择CMOS输出或N沟道开路漏极输出的输出方式。
- *3. 检测温度 (T_{DET}) 可在+40°C~+100°C的范围内,以1°C为进阶单位来进行设定。
- *4. 可利用HYS1端子、HYS2端子设定滞后温度。滞后温度可切换为0°C, 2°C, 4°C和10°C。

2. 封装

表1 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图	焊盘图
SOT-23-5	MP005-A-P-SD	MP005-A-C-SD	MP005-A-R-SD	_
SNT-6A	PG006-A-P-SD	PG006-A-C-SD	PG006-A-R-SD	PG006-A-L-SD

3. 产品名目录

3.1 SOT-23-5

表2

产品名	检测温度 (T _{DET})	DET端子输出方式	DET端子输出逻辑	滞后温度 (T _{HYS})
S-5841A55D-M5T1x	+55°C	N沟道开路漏极	动态 "L"	2°C, 10°C
S-5841A65D-M5T1x	+65°C	N沟道开路漏极	动态 "L"	2°C, 10°C
S-5841A75D-M5T1x	+75°C	N沟道开路漏极	动态 "L"	2°C, 10°C
S-5841A85D-M5T1x	+85°C	N沟道开路漏极	动态 "L"	2°C, 10°C
S-5841A95D-M5T1x	+95°C	N沟道开路漏极	动态 "L"	2°C, 10°C

备注 1. 需要上述以外的产品时,请向本公司营业部咨询。

- **2.** x:G或U
- 3. 用户需要Sn 100%、无卤素产品时,请选择环保标记为 "U" 的产品。

3. 2 SNT-6A

表3

产品名	检测温度 (T _{DET})	DET端子输出方式	DET端子输出逻辑	滞后温度 (T _{HYS})
S-5841A70A-I6T1U	+70°C	CMOS	动态 "H"	0°C, 2°C, 4°C, 10°C
S-5841A80A-I6T1U	+80°C	CMOS	动态 "H"	0°C, 2°C, 4°C, 10°C
S-5841A90A-I6T1U	+90°C	CMOS	动态 "H"	0°C, 2°C, 4°C, 10°C
S-5841A50D-I6T1U	+50°C	N沟道开路漏极	动态 "L"	0°C, 2°C, 4°C, 10°C

备注 需要上述以外的产品时,请向本公司营业部咨询。

■ 引脚排列图

1. SOT-23-5

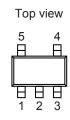


图3

表4

引脚号	符号	描述
1	HYS1*1	滞后端子1
2	VSS	GND端子
3	RT ^{*2}	测试端子
4	VDD	电源端子
5	DET	输出端子

- *1. 请将HYS1端子固定在VDD端子或VSS端子后,再予以使用。
- *2. 请将RT端子设置为开路状态,再予以使用。

2. SNT-6A

表5

引脚号	符号	描述
1	RT*1	测试端子
2	VSS	GND端子
3	HYS1 ^{*2}	滞后端子1
4	DET	输出端子
5	HYS2 ^{*2}	滞后端子2
6	VDD	电源端子

- *1. 请将RT端子设置为开路状态,再予以使用。
- *2. 请将HYS1端子、HYS2端子固定在VDD端子或VSS端子后,再予以使用。

■ 绝对最大额定值

表6

(除特殊注明外: Ta = +25°C)

项目		符号	绝对最大额定值	单位
电源电压 (V _{SS} = 0 V)		V_{DD}	V _{SS} + 12	V
端子电压		V _{RT} , V _{HYS1} , V _{HYS2}	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
输出电压	CMOS输出产品	\/	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
制山 化压	N沟道开路漏极输出产品	V _{DET}	$V_{SS} - 0.3 \sim V_{SS} + 12.0$	V
容许功耗	SOT-23-5	P _D	600 ^{*1}	mW
合计切代	SNT-6A		400 ^{*1}	mW
工作环境温度		T _{opr}	−40 ~ +125	°C
保存温度		T _{stg}	−55 ~ +150	°C

*1. 基板安装时

[安装基板]

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

■ DC电气特性

1. CMOS输出产品

1.1 SOT-23-5

表7

(除特殊注明外: Ta = +25°C)

						(1941年337年333	-	
项目	符号	条件	ŧ	最小值	典型值	最大值	单位	测定 电路
	\/	T _{DET} = +55°C ~ +	-100°C	2.2	ı	10.0	V	1
电	V_{DD}	$T_{DET} = +40^{\circ}C \sim +$	54°C	2.6	ı	10.0	>	1
检测温度	+T _D	_		$T_{\text{DET}}-2.5$	T_DET	$T_{DET} + 2.5$	°C	1
		滞后选项	HYS1	_	-	_	_	_
		Δ.	"H"	_	2	_	°C	1
检测温度滞后 ^{*2}	T _{HYS}	Α	"L"	_	10	_	°C	1
			"H"	_	4	_	°C	1
		В	"L"	_	10	_	°C	1
输出电流	I _{DETH}	$V_{DD} = 3.0 \text{ V},$	V _{DET} = 2.2 V	2	9.4	-	mA	2
制山电流	I _{DETL}	适用于DET端子	$V_{DET} = 0.4 V$	0.5	2.3	_	mA	2
工作时消耗电流	I_{DD}	V _{DD} = 3.0 V		_	10	20	μΑ	1
HYS1端子输入电压 "H"	V _{IH1}	_		$0.8 \times V_{DD}$	-	_	V	3
HYS1端子输入电压 "L"	V _{IL1}	_		_		$0.2 \times V_{\text{DD}}$	V	3
HYS1端子输入电流 "H"	I _{IH1}	$V_{DD} = 3.0 \text{ V}, V_{HYS1} = 3.0 \text{ V}$		-0.1		0.1	μΑ	3
HYS1端子输入电流 "L"	I _{IL1}	V_{DD} = 3.0 V, V_{HYS}	₃₁ = 0 V	-0.1	_	0.1	μΑ	3

^{*1.} 在超过+100°C的工作环境温度下使用时,最低工作电压如下所示。

V_{DD} = 2.3 V (最小值) (检测温度 = +55°C ~ +100°C)

V_{DD} = 2.7 V (最小值) (检测温度 = +40°C ~ +54°C)

*2. SOT-23-5可利用HYS1端子设定滞后温度。

根据选项,可在以下2种中选择。

- ・ 滞后选项A: HYS1 = "H" 时的滞后温度为2°C, HYS1 = "L" 时的滞后温度为10°C
- · 滞后选项B: HYS1 = "H" 时的滞后温度为4°C, HYS1 = "L" 时的滞后温度为10°C

【华氏温度与摄氏温度的转换公式】

 $^{\circ}$ C = ($^{\circ}$ F - 32) \times 5 / 9 $^{\circ}$ F = 32 + $^{\circ}$ C \times 9 / 5

1.2 SNT-6A

表8

(除特殊注明外: Ta = +25°C)

项目	符号	条件	=	最小值	典型值	最大值	单位	测定 电路
电源电压 ^{*1}	.,	T _{DET} = +55°C ~ +	-100°C	2.2	1	10.0	V	1
电源电压	V_{DD}	$T_{DET} = +40^{\circ}C \sim +$	-54°C	2.6	I	10.0	V	1
检测温度	+T _D	_		T _{DET} - 2.5	T_DET	$T_{DET} + 2.5$	°C	1
		HYS1	HYS2	_	1	_	_	_
		"H"	"H"	_	2	_	°C	1
检测温度滞后 ^{*2}	T _{HYS}	"H"	"L"	_	4	_	°C	1
		"L"	"H"	_	10		°C	1
		"L"	"L"	_	0	_	°C	1
输出电流	I _{DETH}	$V_{DD} = 3.0 \text{ V},$	$V_{DET} = 2.2 \text{ V}$	2	9.4	_	mA	2
制山电流	I _{DETL}	适用于DET端子	V _{DET} = 0.4 V	0.5	2.3	1	mA	2
工作时消耗电流	I_{DD}	V _{DD} = 3.0 V		_	10	20	μА	1
HYS1端子输入电压 "H"	V _{IH1}	_		$0.8 \times V_{\text{DD}}$	1	_	V	3
HYS1端子输入电压 "L"	V_{IL1}	_		_	1	$0.2 \times V_{\text{DD}}$	V	3
HYS1端子输入电流 "H"	I _{IH1}	$V_{DD} = 3.0 \text{ V}, V_{HYS}$	₃₁ = 3.0 V	-0.1	1	0.1	μА	3
HYS1端子输入电流 "L"	I _{IL1}	$V_{DD} = 3.0 \text{ V}, V_{HYS1} = 0 \text{ V}$		-0.1	1	0.1	μА	3
HYS2端子输入电压 "H"	V _{IH2}			$0.8 \times V_{DD}$		_	V	3
HYS2端子输入电压 "L"	V_{IL2}	-		_	1	$0.2 \times V_{\text{DD}}$	V	3
HYS2端子输入电流 "H"	I _{IH2}	$V_{DD} = 3.0 \text{ V}, V_{HYS}$	₃₂ = 3.0 V	-0.1		0.1	μА	3
HYS2端子输入电流 "L"	I _{IL2}	$V_{DD} = 3.0 \text{ V}, V_{HYS}$	₃₂ = 0 V	-0.1	_	0.1	μА	3

^{*1.} 在超过+100°C的工作环境温度下使用时,最低工作电压如下所示。

V_{DD} = 2.3 V (最小值) (检测温度 = +55°C ~ +100°C)

V_{DD} = 2.7 V (最小值) (检测温度 = +40°C ~ +54°C)

***2.** SNT-6A可利用HYS1端子、HYS2端子设定滞后温度。 滞后温度可切换为0°C, 2°C, 4°C和10°C。

【华氏温度与摄氏温度的转换公式】

 $^{\circ}$ C = ($^{\circ}$ F - 32) \times 5 / 9

 $^{\circ}F$ = 32 + $^{\circ}C \times 9$ / 5

2. N沟道开路漏极输出产品

2.1 SOT-23-5

表9

(除特殊注明外: Ta = +25°C)

						(13/19/3/17/17)		1200
项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
电源电压 ^{*1}	V	T _{DET} = +55°C ~ +	100°C	2.2	-	10.0	V	1
电源电压	V_{DD}	$T_{DET} = +40^{\circ}C \sim +$	54°C	2.6	ı	10.0	V	1
检测温度	+T _D	_		T _{DET} - 2.5	T_DET	T _{DET} + 2.5	Ô	1
		滞后选项	HYS1	_	_	_	_	-
		Δ.	"H"	_	2	_	°C	1
检测温度滞后 ^{*2}	T _{HYS}	Α	"L"	_	10	_	°C	1
			"H"	_	4	_	°C	1
		В	"L"	_	10	_	°C	1
输出电流	I _{DETL}	V _{DET} = 0.4 V, V _{DD} = 3.0 V		0.5	2.3	_	mA	2
泄漏电流	I _{LEAK}	$V_{DET} = 10.0 \text{ V}, V_{D}$	_D = 3.0 V	_	_	100	nA	2
工作时消耗电流	I _{DD}	V _{DD} = 3.0 V		_	10	20	μΑ	1
HYS1端子输入电压 "H"	V_{IH1}	_		$0.8 \times V_{DD}$	_	_	V	3
HYS1端子输入电压 "L"	V _{IL1}	_		_	_	$0.2 \times V_{DD}$	V	3
HYS1端子输入电流 "H"	I _{IH1}	$V_{DD} = 3.0 \text{ V}, V_{HYS}$	₁ = 3.0 V	-0.1	_	0.1	μΑ	3
HYS1端子输入电流 "L"	I _{IL1}	V_{DD} = 3.0 V, V_{HYS}	₁ = 0 V	-0.1	1	0.1	μA	3

^{*1.} 在超过+100°C的工作环境温度下使用时,最低工作电压如下所示。

V_{DD} = 2.3 V (最小值) (检测温度 = +55°C ~ +100°C)

V_{DD} = 2.7 V (最小值) (检测温度 = +40°C ~ +54°C)

*2. SOT-23-5可利用HYS1端子设定滞后温度。

根据选项,可在以下2种中选择。

- · 滞后选项A: HYS1 = "H" 时的滞后温度为2°C, HYS1 = "L" 时的滞后温度为10°C
- · 滞后选项B: HYS1 = "H" 时的滞后温度为4°C, HYS1 = "L" 时的滞后温度为10°C

【华氏温度与摄氏温度的转换公式】

 $^{\circ}$ C = ($^{\circ}$ F - 32) \times 5 / 9 $^{\circ}$ F = 32 + $^{\circ}$ C \times 9 / 5

2. 2 SNT-6A

表10

(除特殊注明外: Ta = +25°C)

项目 符号 条件 最小值 典型值 最大值 单位 电源电压*1 VDD TDET = +55°C ~ +100°C 2.2 - 10.0 V 检测温度 +TD - TDET - 2.5 TDET TDET +2.5 °C HYS1 HYS2 - - - - WM温度滞后*2 "H" "H" - 2 - °C "H" "L" - 4 - °C "L" "H" - 0 - °C	测定 电路 1 1 1
世源电压 VDD TDET = +40°C ~ +54°C 2.6 — 10.0 V 检测温度 +TD — TDET - 2.5 TDET TDET + 2.5 °C HYS1 HYS2 — — — — "H" "H" "B" — — °C "L" "H" "H" — — °C	1
检测温度 +TD - TDET - 2.5 TDET - 2.5 TDET + 2.5 °C HYS1 HYS2 - - - - - "H" "H" - 2 - °C "H" "L" - 4 - °C "L" "H" - 10 - °C	· •
HYS1 HYS2 - - - "H" "H" - 2 - °C 检测温度滞后*2 "H" "L" - 4 - °C "L" "H" - 10 - °C	1
检测温度滞后*2 HYS1 HYS2 - - - - "H" "H" - 2 - °C "H" "L" - 4 - °C "L" "H" - 10 - °C	
检测温度滞后*2 T _{HYS} "H" "L" - 4 - °C "L" "H" - 10 - °C	_
"L" "H" – 10 – °C	1
	1
""	1
	1
输出电流	2
泄漏电流	2
工作时消耗电流 I _{DD} V _{DD} = 3.0 V - 10 20 μA	1
HYS1端子输入电压 "H"	3
HYS1端子输入电压 "L"	3
HYS1端子输入电流 "H"	3
HYS1端子输入电流 "L"	3
HYS2端子输入电压 "H" V _{IH2} - 0.8 × V _{DD} V	3
HYS2端子输入电压 "L" V _{IL2} 0.2 × V _{DD} V	3
HYS2端子输入电流 "H"	3
HYS2端子输入电流 "L"	

^{*1.} 在超过+100°C的工作环境温度下使用时,最低工作电压如下所示。

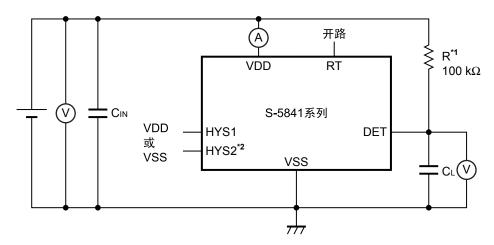
V_{DD} = 2.3 V (最小值) (检测温度 = +55°C ~ +100°C)

V_{DD} = 2.7 V (最小值) (检测温度 = +40°C ~ +54°C)

***2.** SNT-6A可利用HYS1端子、HYS2端子设定滞后温度。 滞后温度可切换为0°C, 2°C, 4°C和10°C。

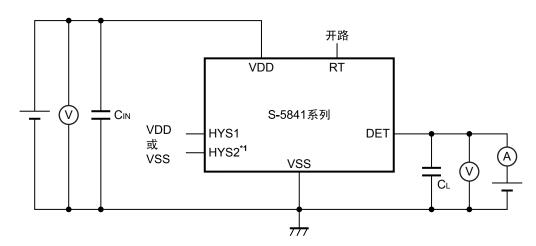
【华氏温度与摄氏温度的转换公式】

 $^{\circ}$ C = ($^{\circ}$ F - 32) \times 5 / 9


 $^{\circ}F$ = 32 + $^{\circ}C \times 9$ / 5

■ AC电气特性

表11


项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
噪音抑制时间	t _{delay}	V _{DD} = 3.0 V, Ta = 检测温度	1	380	1	μS	_

■ 测定电路

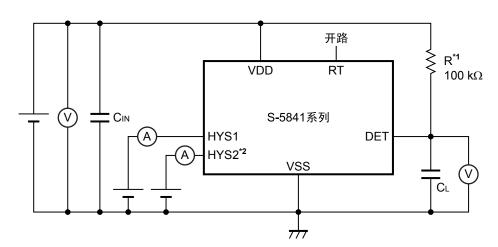

- *1. CMOS输出的产品不需要电阻 (R)。
- *2. SOT-23-5不备有HYS2端子。

图5 测定电路1

*1. SOT-23-5不备有HYS2端子。

图6 测定电路2

- *1. CMOS输出的产品不需要电阻 (R)。
- *2. SOT-23-5不备有HYS2端子。

图7 测定电路3

■ 工作说明

1. 基本工作

S-5841系列是进行温度检测,并向外部输出信号的温度开关IC (恒温器IC)。可以对检测温度、输出方式和输出逻辑的组合进行选择。

下面说明DET端子输出逻辑为动态 "H" 时的工作状况。

在电源投入后开始温度检测,当温度在检测温度 $(+T_D)$ 以下时,DET端子会保持为 "L"。之后,随着温度的上升,当温度超过检测温度时,DET端子转变为"H"。

在检测温度后,温度会下降,到温度达到解除温度 $(+T_D-T_{HYS})$ 时,DET端子恢复为 "L"。时序图如图8所示。

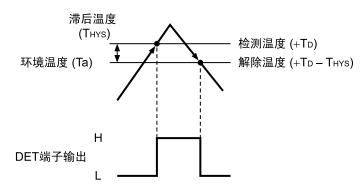


图8 DET端子输出逻辑为动态 "H" 时的工作状况

2. 滞后设定

2.1 SOT-23-5

利用HYS1端子设定滞后温度。根据选项,可选择滞后温度切换为2°C和10°C或切换为4°C和10°C的产品。

表12 滞后选项A

设定端子	
HYS1	滞后温度
"H"	2°C
"L"	10°C

表13 滞后选项B

设定端子	
· · · · · · · · · · · · · · · · · · ·	滞后温度
HYS1	(市口)画泛
"H"	4°C
"L"	10°C

2. 2 SNT-6A

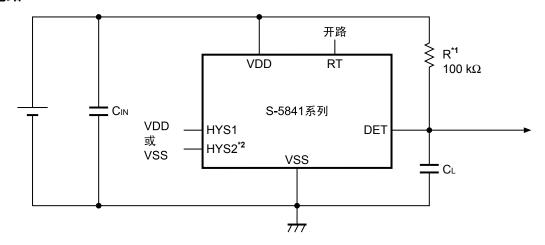
利用HYS1端子、HYS2端子设定滞后温度。滞后温度可切换为0°C, 2°C, 4°C和10°C。

表14 滞后选项A

设定	设定端子 滞后温度		
HYS1	HYS2	市口/ 画/支	
"H"	"H"	2°C	
"H"	"L"	4°C	
"L"	"H"	10°C	
"L"	"L"	0°C	

3. 延迟电路

S-5841系列可通过延迟电路来设置噪音抑制时间 (t_{delay}),以此防止DET端子输出的误工作。 下面说明DET端子输出逻辑为动态 "H" 时的工作状况。


3.1 在检测温度以下时

比较器的输出为 "H"、DET端子始终处于 "L"。但由于噪音等原因,即使比较器的输出反转为 "L",若此种状态持续的时间比噪音抑制时间短,则DET端子仍然保持 "L"。

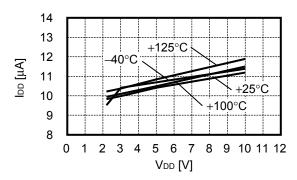
3.2 高于检测温度时

比较器的输出转变为 "L", 若此种状态持续时间超过噪音抑制时间, DET端子则会转变为 "H"。

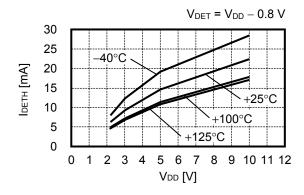
■ 标准电路

- *1. CMOS输出的产品不需要电阻 (R)。
- *2. SOT-23-5不备有HYS2端子。

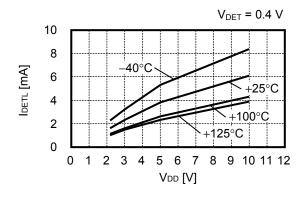
图9

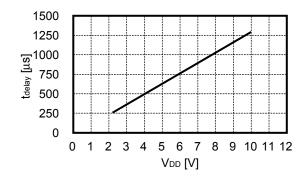

注意 上述连接图以及参数仅供参考,并不作为保证工作的依据。请在进行充分的评价基础上设定实际的应用电路的参数。

■ 注意事项


- 为了使电路稳定工作,请在VDD VSS端子之间连接0.1 μF以上的电容器 (C_{IN})。
- 为了防止电源投入时的噪声所引起的误工作,请在DET端子处连接1 μ F左右的电容器 (C_L)。
- 在RT端子处增加电容时,有可能会产生振荡。请将RT端子设置为开路状态,再予以使用。
- S-5841系列在RT端子短路连接到VSS上时, DET端子转变为动态。
- 请将HYS1端子、HYS2端子固定到VDD或VSS上以后,再予以使用。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品 发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据 (典型数据)


1. 消耗电流 – 电源电压特性


2. DET端子电流 "H" - 电源电压特性 (仅限CMOS输出产品)

3. DET端子电流 "L" - 电源电压特性

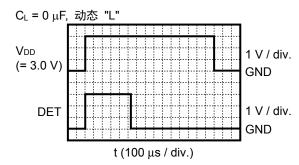
4. 噪音抑制时间 – 电源电压特性

5. 热敏响应性 (输出电压 – 时间)

5. 1 在t = 0 s的条件下,将封装从+25°C空气中转移到+100°C空气中时

5.2 在t = 0 s的条件下,将封装从+25°C空气中转移到+100°C液体中时

V_{DD} = 3.0 V, C_L = 0 μF, 检测温度 = +70°C, 动态 "L"


4
3
2
1
0
-1
-20 -10 0 10 20 30 40 50 60
t [s]

6. 启动响应

6.1 在检测温度以下时 (Ta≤+T_D)

 C_L = 0 μ F,动态 "L" V_{DD} (= 3.0 V) DET $t~(100~\mu s / div.)$ T~V/div. GND

6.2 高于检测温度时 (Ta>+T_D)

■ 标记规格

1. SOT-23-5

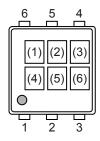
Top view

5 4 (1) (2) (3) (4)

(1)~(3): 产品简称 (请参阅产品名和产品简称的对照表)

(4): 批号

产品名和产品简称的对照表

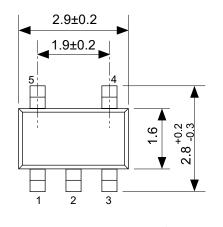

产品名		产品简称		
广阳有	(1)	(2)	(3)	
S-5841A55D-M5T1x	Т	Н	В	
S-5841A65D-M5T1x	Т	Н	С	
S-5841A75D-M5T1x	Т	Н	D	
S-5841A85D-M5T1x	Т	Н	E	
S-5841A95D-M5T1x	Т	Н	F	

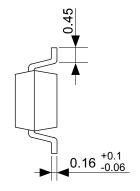
备注 1. x:G或U

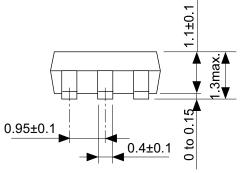
2. 用户需要Sn 100%、无卤素产品时,请选择环保标记为 "U" 的产品。

2. SNT-6A

Top view

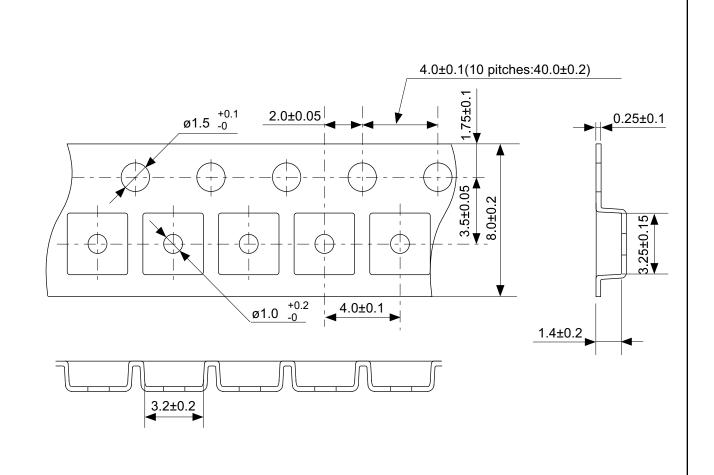


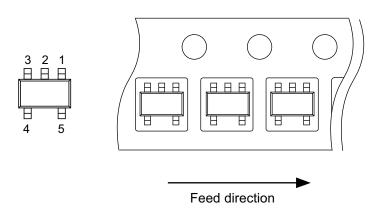

(1)~(3): 产品简称 (请参阅产品名和产品简称的对照表)


(4)~(6): 批号

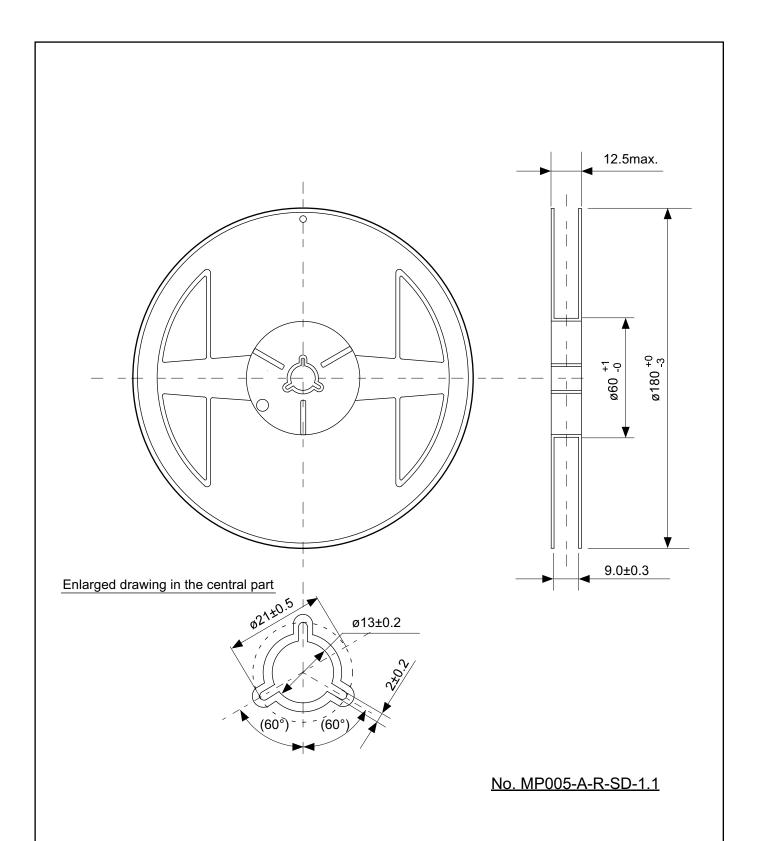
产品名和产品简称的对照表

产品名	产品简称		
厂吅石	(1)	(2)	(3)
S-5841A70A-I6T1U	Т	I	G
S-5841A80A-I6T1U	Т	I	Н
S-5841A90A-I6T1U	Т	I	I
S-5841A50D-I6T1U	Т	Н	Α



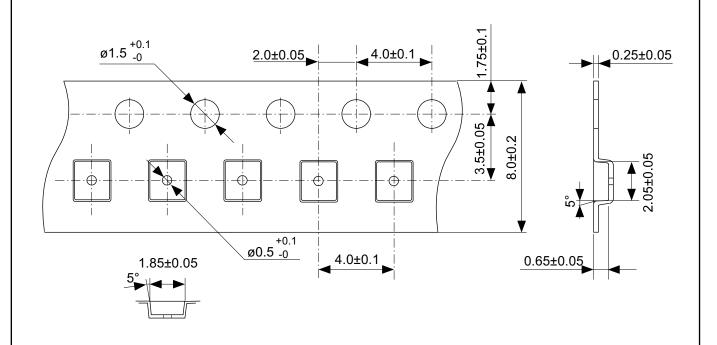


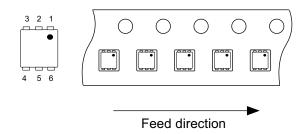
No. MP005-A-P-SD-1.2


TITLE	SOT235-A-PKG Dimensions
No.	MP005-A-P-SD-1.2
SCALE	
UNIT	mm
SILS	emiconductor Corporation

No. MP005-A-C-SD-2.1

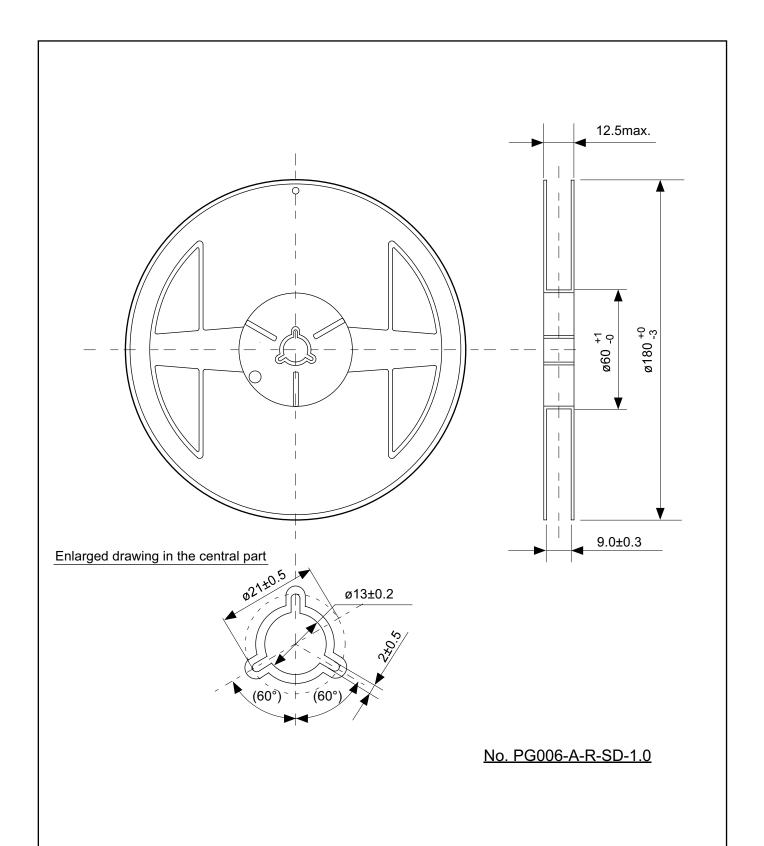
TITLE	SOT235-A-Carrier Tape
No.	MP005-A-C-SD-2.1
SCALE	
UNIT	mm
SII Semiconductor Corporation	

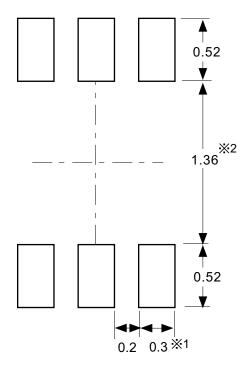



SOT235-A-Reel		
MP005-A-R-SD-1.1		
	QTY.	3,000
mm		
SII Semiconductor Corporation		
	MP00	MP005-A-R-SE QTY.

No. PG006-A-P-SD-2.0

TITLE	SNT-6A-A-PKG Dimensions
No.	PG006-A-P-SD-2.0
SCALE	
UNIT	mm
SII Semiconductor Corporation	




No. PG006-A-C-SD-1.0

TITLE	SNT-6A-A-Carrier Tape
No.	PG006-A-C-SD-1.0
SCALE	
UNIT	mm
SII S	emiconductor Corporation

SII Semiconductor Corporation

TITLE	SNT-6A-A-Reel		
No.	PG006-A-R-SD-1.0		
SCALE		QTY.	5,000
UNIT			
		·	
SII Semiconductor Corporation			

※1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 ※2. パッケージ中央にランドパターンを広げないでください (1.30 mm ~ 1.40 mm)。

- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き" を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- ※2. Do not widen the land pattern to the center of the package (1.30 mm ~ 1.40 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.30 mm~1.40 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PG006-A-L-SD-4.1

TITLE	SNT-6A-A -Land Recommendation
No.	PG006-A-L-SD-4.1
SCALE	
UNIT	mm
SII Se	emiconductor Corporation

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可 能未经预告而更改。
- 2. 本资料记载的电路示例、使用方法仅供参考,并非保证批量生产的设计。 使用本资料的信息后,发生并非因产品而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承 担任何责任。
- 3. 因本资料记载的内容有说明错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本资料记载的产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本资料记载的产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本资料记载的产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制 造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本资料记载的产品并非是设计用于可能对人体、生命及财产造成损失的设备或装置的部件(医疗设备、防灾设备、安全 防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。 本公司指定的车载用途例外。上述用途未经本公司的书面许可不得使用。本资料所记载的产品不能用于生命维持装置、 植入人体使用的设备等直接影响人体生命的设备。考虑使用于上述用途时,请务必事先与本公司营业部门商谈。 本公司指定用途以外使用本资料记载的产品而导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。 为了防止因本公司产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、 防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本资料记载的产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本资料记载的产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。 另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本资料记载的产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。 本资料记载的内容并非是对本公司或第三方的知识产权、其它权利的实施及使用的承诺或保证。严禁在未经本公司许可 的情况下转载或复制这些著作物的一部分,向第三方公开。
- 14. 有关本资料的详细内容,请向本公司营业部门咨询。

1.0-2016.01